9 research outputs found

    Insulin Receptor Substrate-2 (IRS-2): A Novel Hypoxia-Responsive Gene in Breast Cancer: A Dissertation

    Get PDF
    Breast cancer is the most common malignancy among women in the U.S. While many successful treatments exist for primary breast cancer, very few are available for patients with metastatic disease. The purpose of this study was to understand the role of Insulin Receptor Subtrate-2 (IRS-2) in breast cancer metastasis. IRS-2 belongs to the IRS family of cytoplasmic adaptor proteins that mediate signaling from cell surface receptors, many of which have been implicated in cancer. Although the IRS proteins are highly homologous in structure and have some complementary functions, growing evidence supports that the IRS proteins have unique roles in cancer. IRS-1 has been shown to promote tumor cell proliferation, while IRS-2 has been positively associated with cancer cell invasion, glycolysis and tumor metastasis. In the current work, we identified IRS-2 as a novel hypoxia-responsive gene in breast carcinoma cells. In contrast, IRS-1 expression does not increase in response to hypoxia, supporting the notion of their non-overlapping functions. Hypoxia promotes the adaptation and resistance of cancer cells to chemo- and radiation therapy, and also promotes tumor cell survival, invasion and metastasis by selecting for aggressive tumor cells that can survive under stressful low oxygen conditions. We have shown that IRS-2 upregulation in response to hypoxia promotes Akt signaling and tumor cell viability and invasion. We identified a cell context-dependent role for Hypoxia Inducible Factor (HIF) in the regulation of IRS-2 expression in hypoxia, with HIF-2 playing a more dominant role than HIF-1. We also demonstrate that binding of Snail, a regulator of the EMT, to the IRS-2 promoter keeps the chromatin in an open conformation that is permissive for HIF-dependent transcription of IRS-2 in hypoxia. IRS-2 is not upregulated by hypoxia in well-differentiated epithelial-like carcinoma cells that do not express Snail, implicating IRS-2 gene expression as part of the EMT programming. In summary, we have identified an endogenous mechanism by which cancer cells can shift the balance of IRS-1 and IRS-2 to favor IRS-2 expression and function, which promotes survival, invasion, and ultimately metastasis. Understanding the mechanism of IRS-2 regulation by hypoxia may reveal new therapeutic targets for metastatic breast cancer

    Expression and function of the insulin receptor substrate proteins in cancer

    Get PDF
    The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression

    LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation

    Get PDF
    The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy

    Mechanism of PMP24 gene silencing in a PC3 prostate cancer cell line

    No full text
    Numerous genetic and epigenetic changes occur in the cell during prostate carcinogenesis. Recently, the importance of epigenetic events in carcinogenesis has been emphasized. Changes in DNA methylation pattern is one of these events. Tumor cells commonly exhibit overall genome hypomethylation and local hypermethylation of many genes. PMP24 encodes a 24 kDa Peroxisomal Membrane Protein that was recently determined to be hypermethylated in two prostate cancer cell lines and to contribute to prostate cancer progression. This project studied the methylation pattern and expression of the PMP24 gene in a PC3 cell line. The effect of different concentrations of demethylating agent 5-AZA-2'-deoxycytidine (5AZAdC) and different times of treatment on the PMP24 methylation pattern and expression were studied. This study establishes a correlation between PMP24 gene CpG island hypermethylation and gene silencing in the PC3 cell line. The gene is re-expressed by 5AZAdC treatment but not by the histone deacetylase inhibitor TSA, which indicates that PMP24 gene expression is silenced solely by DNA methylation, not by histone deacetylation. The AP2 binding site within promoter CpG island of PMP24 gene was discovered to be demethylated first after the treatment with 5AZAdC, which suggests that demethylation is specific, targeting the crucial sites for transcription first

    Improving sea turtle conservation in Costa Rica through environmental education.

    No full text
    The absence of an educational program about sea turtles in Costa Rica is one of the concerns of MINAE. Marco Solano, coordinator of the Wetlands Program at MINAE, requested help from students at WPI to create an educational booklet about sea turtles and an annotated bibliography of sources used to create the booklet. The booklet can be used by primary and secondary schools. The bibliography can be used as a reference source for further work in development of sea turtle educational curriculum

    Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation

    No full text
    Prostate cancer affects a large proportion of the male population, and is primarily driven by androgen receptor (AR) activity. First-line treatment typically consists of reducing AR signaling by hormone depletion, but resistance inevitably develops over time. One way to overcome this issue is to block AR function via alternative means, preferably by inhibiting protein targets that are more active in tumors than in normal tissue. By staining prostate cancer tumor sections, elevated LIM kinase 1 (LIMK1) expression and increased phosphorylation of its substrate Cofilin were found to be associated with poor outcome and reduced survival in patients with nonmetastatic prostate cancer. A LIMK-selective small molecule inhibitor (LIMKi) was used to determine whether targeted LIMK inhibition was a potential prostate cancer therapy. LIMKi reduced prostate cancer cell motility, as well as inhibiting proliferation and increasing apoptosis in androgen-dependent prostate cancer cells more effectively than in androgen-independent prostate cancer cells. LIMK inhibition blocked ligand-induced AR nuclear translocation, reduced AR protein stability and transcriptional activity, consistent with its effects on proliferation and survival acting via inhibition of AR activity. Furthermore, inhibition of LIMK activity increased αTubulin acetylation and decreased AR interactions with αTubulin, indicating that the role of LIMK in regulating microtubule dynamics contributes to AR function. These results indicate that LIMK inhibitors could be beneficial for the treatment of prostate cancer both by reducing nuclear AR translocation, leading to reduced proliferation and survival, and by inhibiting prostate cancer cell dissemination

    Targeting Rho GTPase signaling for cancer therapy

    No full text
    Accumulating evidence from basic and clinical studies supports the concept that signaling pathways downstream of Rho GTPases play important roles in tumor development and progression. As a result, there has been considerable interest in the possibility that specific proteins in these signal transduction pathways could be potential targets for cancer therapy. A number of inhibitors targeting critical effector proteins, activators or the Rho GTPases themselves, have been developed. We will review the strategies currently being used to develop inhibitors of Rho GTPases and downstream signaling kinases and discuss candidate entities. Although molecularly targeted drugs that inhibit Rho GTPase signaling have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to drive considerable pharmaceutical research and development

    Persistent Hypomethylation in the Promoter of Nucleosomal Binding Protein 1 (Nsbp1) Correlates with Overexpression of Nsbp1 in Mouse Uteri Neonatally Exposed to Diethylstilbestrol or Genistein

    No full text
    Neonatal exposure of CD-1 mice to diethylstilbestrol (DES) or genistein (GEN) induces uterine adenocarcinoma in aging animals. Uterine carcinogenesis in this model is ovarian dependent because its evolution is blocked by prepubertal ovariectomy. This study seeks to discover novel uterine genes whose expression is altered by such early endocrine disruption via an epigenetic mechanism. Neonatal mice were treated with 1 or 1000 μg/kg DES, 50 mg/kg GEN, or oil (control) on d 1–5. One group of treated mice was killed before puberty on d 19. Others were ovariectomized or left intact, and killed at 6 and 18 months of age. Methylation-sensitive restriction fingerprinting was performed to identify differentially methylated sequences associated with neonatal exposure to DES/GEN. Among 14 candidates, nucleosomal binding protein 1 (Nsbp1), the gene for a nucleosome-core-particle binding protein, was selected for further study because of its central role in chromatin remodeling. In uteri of immature control mice, Nsbp1 promoter CpG island (CGI) was minimally methylated. Once control mice reached puberty, the Nsbp1 CGI became hypermethylated, and gene expression declined further. In contrast, in neonatal DES/GEN-treated mice, the Nsbp1 CGI stayed anomalously hypomethylated, and the gene exhibited persistent overexpression throughout life. However, if neonatal DES/GEN-treated mice were ovariectomized before puberty, the CGI remained minimally to moderately methylated, and gene expression was subdued except in the group treated with 1000 μg/kg DES. Thus, the life reprogramming of uterine Nsbp1 expression by neonatal DES/GEN exposure appears to be mediated by an epigenetic mechanism that interacts with ovarian hormones in adulthood
    corecore