17,148 research outputs found
Eccentricity fluctuations in an integrated hybrid approach: Influence on elliptic flow
The effects of initial state fluctuations on elliptic flow are investigated
within a (3+1)d Boltzmann + hydrodynamics transport approach. The spatial
eccentricity ( and ) is calculated for
initial conditions generated by a hadronic transport approach (UrQMD). Elliptic
flow results as a function of impact parameter, beam energy and transverse
momentum for two different equations of state and for averaged initial
conditions or a full event-by-event setup are presented. These investigations
allow the conclusion that in mid-central ( fm) heavy ion collisions the
final elliptic flow is independent of the initial state fluctuations and the
equation of state. Furthermore, it is demonstrated that most of the is
build up during the hydrodynamic stage of the evolution. Therefore, the use of
averaged initial profiles does not contribute to the uncertainties of the
extraction of transport properties of hot and dense QCD matter based on viscous
hydrodynamic calculations.Comment: 7 pages, 7 figures, minor revision of figures and conclusion, as
published in PR
Exact on-event expressions for discrete potential systems
The properties of systems composed of atoms interacting though discrete potentials are dictated by a series of events which occur between pairs of atoms. There are only four basic event types for pairwise discrete potentials and the square-well/shoulder systems studied here exhibit them all. Closed analytical expressions are derived for the on-event kinetic energy distribution functions for an atom, which are distinct from the Maxwell-Boltzmann distribution function. Exact expressions are derived that directly relate the pressure and temperature of equilibrium discrete potential systems to the rates of each type of event. The pressure can be determined from knowledge of only the rate of core and bounce events. The temperature is given by the ratio of the number of bounce events to the number of disassociation/association events. All these expressions are validated with event-driven molecular dynamics simulations and agree with the data within the statistical precision of the simulations
Experimentally Feasible Security Check for n-qubit Quantum Secret Sharing
In this article we present a general security strategy for quantum secret
sharing (QSS) protocols based on the HBB scheme presented by Hillery, Bu\v{z}ek
and Berthiaume [Phys. Rev A \textbf{59}, 1829 (1999)]. We focus on a
generalization of the HBB protocol to communication parties thus including
-partite GHZ states. We show that the multipartite version of the HBB scheme
is insecure in certain settings and impractical when going to large . To
provide security for such QSS schemes in general we use the framework presented
by some of the authors [M. Huber, F. Minert, A. Gabriel, B. C. Hiesmayr, Phys.
Rev. Lett. \textbf{104}, 210501 (2010)] to detect certain genuine partite
entanglement between the communication parties. In particular, we present a
simple inequality which tests the security.Comment: 5 pages, submitted to Phys. Rev.
Collective effects in charge transfer within a hybrid organic-inorganic system
A collective electron transfer (ET) process was discovered by studying the
current noise in a field effect transistor with light-sensitive gate formed by
nanocrystals linked by organic molecules to its surface. Fluctuations in the ET
through the organic linker are reflected in the fluctuations of the transistor
conductivity. The current noise has an avalanche character. Critical exponents
obtained from the noise power spectra, avalanche distributions, and the
dependence of the average avalanche size on avalanche duration are consistent
with each other. A plausible model is proposed for this phenomenonComment: 15 pages 4 figures. Accepted for publication in Physical Review
Letter
Toward quantum simulations of biological information flow
Recent advances in the spectroscopy of biomolecules have highlighted the
possibility of quantum coherence playing an active role in biological energy
transport. The revelation that quantum coherence can survive in the hot and wet
environment of biology has generated a lively debate across both the physics
and biology communities. In particular, it remains unclear to what extent
non-trivial quantum effects are utilised in biology and what advantage, if any,
they afford. We propose an analogue quantum simulator, based on currently
available techniques in ultra-cold atom physics, to study a model of energy and
electron transport based on the Holstein Hamiltonian By simulating the salient
aspects of a biological system in a tunable laboratory setup, we hope to gain
insight into the validity of several theoretical models of biological quantum
transport in a variety of relevant parameter regimes.Comment: 8 Pages, 2 Figures, Non-technical contributing article for the
Interface Focus Theme Issue `Computability and the Turning centenary'.
Interface Focus
http://rsfs.royalsocietypublishing.org/content/early/2012/03/22/rsfs.2011.0109.shor
Accurate simulation estimates of cloud points of polydisperse fluids
We describe two distinct approaches to obtaining cloud point densities and
coexistence properties of polydisperse fluid mixtures by Monte Carlo simulation
within the grand canonical ensemble. The first method determines the chemical
potential distribution (with the polydisperse attribute)
under the constraint that the ensemble average of the particle density
distribution matches a prescribed parent form. Within the region
of phase coexistence (delineated by the cloud curve) this leads to a
distribution of the fluctuating overall particle density n, p(n), that
necessarily has unequal peak weights in order to satisfy a generalized lever
rule. A theoretical analysis shows that as a consequence, finite-size
corrections to estimates of coexistence properties are power laws in the system
size. The second method assigns such that an equal peak weight
criterion is satisfied for p(n)\mu(\sigma)$. We show how to ascertain the
requisite weight factor operationally. A theoretical analysis of the second
method suggests that it leads to finite-size corrections to estimates of
coexistence properties which are {\em exponentially small} in the system size.
The scaling predictions for both methods are tested via Monte Carlo simulations
of a novel polydisperse lattice gas model near its cloud curve, the results
showing excellent quantitative agreement with the theory.Comment: 8 pages, 6 figure
Recommended from our members
Soft X-ray seeding studies for the SLAC Linac Coherent Light Source II
We present the results from studies of soft X-ray seeding options for the LCLS-II X-ray free electron laser (FEL) at SLAC. The LCLS-II will use superconducting accelerator technology to produce X-ray pulses at up to 1 MHz repetition rate using 4 GeV electron beams. If properly seeded, these pulses will be nearly fully coherent, and highly stable in photon energy, bandwidth, and intensity, thus enabling unique experiments with intense high-resolution soft X-rays. Given the expected electron beam parameters from start to end simulations and predicted FEL performance, our studies reveal echo enabled harmonic generation (EEHG) and soft X-ray self-seeding (SXRSS) as promising and complementary seeding methods. We find that SXRSS has the advantage of simplicity and will deliver 5-35 times higher spectral brightness than EEHG in the 1-2 nm range, but lacks some of the potential for phase-stable multipulse and multicolor FEL operations enabled by external laser seeding with EEHG
Targeted expression of truncated glued disrupts giant fiber synapse formation in Drosophila
Glued1 (Gl1) mutants produce a truncated protein that acts as a poison subunit and disables the cytoplasmic retrograde motor dynein. Heterozygous mutants have axonal defects in the adult eye and the nervous system. Here we show that selective expression of the poison subunit in neurons of the giant fiber (GF) system disrupts synaptogenesis between the GF and one of its targets, the tergotrochanteral motorneuron (TTMn). Growth and pathfinding by the GF axon and the TTMn dendrite are normal, but the terminal of the GF axon fails to develop normally and becomes swollen with large vesicles. This is a presynaptic defect because expression of truncated Glued restricted to the GF results in the same defect. When tested electrophysiologically, the flies with abnormal axons show a weakened or absent GF-TTMn connection. In Glued1 heterozygotes, GF-TTMn synapse formation appears morphologically normal, but adult flies show abnormal responses to repetitive stimuli. This physiological effect is also observed when tetanus toxin is expressed in the GFs. Because the GF-TTMn is thought to be a mixed electrochemical synapse, the results show that Glued has a role in assembling both the chemical and electrical components. We speculate that disrupting transport of a retrograde signal disrupts synapse formation and maturation
Dynamical Casimir effect for gravitons in bouncing braneworlds
We consider a two-brane system in a five-dimensional anti-de Sitter
spacetime. We study particle creation due to the motion of the physical brane
which first approaches the second static brane (contraction) and then recedes
from it(expansion). The spectrum and the energy density of the generated
gravitons are calculated. We show that the massless gravitons have a blue
spectrum and that their energy density satisfies the nucleosynthesis bound with
very mild constraints on the parameters. We also show that the Kaluza-Klein
modes cannot provide the dark matter in an anti-de-Sitter braneworld. However,
for natural choices of parameters, backreaction from the Kaluza-Klein gravitons
may well become important. The main findings of this work have been published
in the form of a Letter [R. Durrer and M. Ruser, Phys. Rev. Lett. 99, 071601
(2007), arXiv:0704.0756].Comment: 40 pages, 34 figures, improved and extended version, matches
published versio
- …