71 research outputs found

    Combined Treatment With Pembrolizumab and Allogenic BK Virus-Specific T Cells in Progressive Multifocal Leukoencephalopathy A Case Report

    Get PDF
    Objective We report a combination of BK virus-specific T cells and pembrolizumab as a treatment option in progressive multifocal leukoencephalopathy (PML). Results A 57-year-old male patient diagnosed with PML presented a fast-progressing right hemiparesis, aphasia, and cognitive deficits. Brain MRI showed a severe leukoencephalopathy with diffusion restriction. The patient was treated with 10 doses of pembrolizumab (2 mg/kg body weight) in differing intervals and 2 partially human leukocyte antigen-matched allogenic BK virus-specific T cell transfusions after the fifth pembrolizumab treatment. Although pembrolizumab alone decreased the viral load but failed to control the virus, BK-specific T cell transfer further enhanced the decline of JC virus copies in the CSF. Moreover, the regression of leukoencephalopathy and disappearance of diffusion restriction in subsequent brain MRI were observed. The combined treatment resulted in a clinical stabilization with improvements of the cognitive and speech deficits. Discussion This case supports the hypothesis that pembrolizumab is more efficient in the presence of an appropriate number of functional antigen-specific T cells. Thus, the combined treatment of pembrolizumab and virus-specific T cells should be further evaluated as a treatment option for PML in future clinical trials

    T2-Weighted Dixon Turbo Spin Echo for Accelerated Simultaneous Grading of Whole-Body Skeletal Muscle Fat Infiltration and Edema in Patients With Neuromuscular Diseases

    Get PDF
    Objective The assessment of fatty infiltration and edema in the musculature of patients with neuromuscular diseases (NMDs) typically requires the separate performance of T-1-weighted and fat-suppressed T-2-weighted sequences. T-2-weighted Dixon turbo spin echo (TSE) enables the generation of T-2-weighted fat- and water-separated images, which can be used to assess both pathologies simultaneously. The present study examines the diagnostic performance of T-2-weighted Dixon TSE compared with the standard sequences in 10 patients with NMDs and 10 healthy subjects. Methods Whole-body magnetic resonance imaging was performed including T-1-weighted Dixon fast field echo, T-2-weighted short-tau inversion recovery, and T-2-weighted Dixon TSE. Fatty infiltration and intramuscular edema were rated by 2 radiologists using visual semiquantitative rating scales. To assess intermethod and interrater agreement, weighted Cohen's coefficients were calculated. Results The ratings of fatty infiltration showed high intermethod and high interrater agreement (T-1-weighted Dixon fast field echo vs T-2-weighted Dixon TSE fat image). The evaluation of edematous changes showed high intermethod and good interrater agreement (T-2-weighted short-tau inversion recovery vs T-2-weighted Dixon TSE water image). Conclusions T-2-weighted Dixon TSE imaging is an alternative for accelerated simultaneous grading of whole-body skeletal muscle fat infiltration and edema in patients with NMDs

    Clonal hematopoiesis as a pitfall in germline variant interpretation in the context of Mendelian disorders

    Get PDF
    Clonal hematopoiesis because of somatic mutations in hematopoietic stem/progenitor cells is an age-related phenomenon and commonly observed when sequencing blood DNA in elderly individuals. Several genes that are implicated in clonal hematopoiesis are also associated with Mendelian disorders when mutated in the germline, potentially leading to variant misinterpretation. We performed a literature search to identify genes associated with age-related clonal hematopoiesis followed by an OMIM query to identify the subset of genes in which germline variants are associated with Mendelian disorders. We retrospectively screened for diagnostic cases in which the presence of age-related clonal hematopoiesis confounded exome sequencing data interpretation. We found 58 genes in which somatic mutations are implicated in clonal hematopoiesis, while germline variants in the same genes are associated with Mendelian (mostly neurodevelopmental) disorders. Using five selected cases of individuals with suspected monogenic disorders, we illustrate how clonal hematopoiesis in either variant databases or exome sequencing datasets poses a pitfall, potentially leading to variant misclassification and erroneous conclusions regarding gene-disease associations

    Brain Iron and Metabolic Abnormalities in C19orf12 Mutation Carriers: A 7.0 Tesla MRI Study in Mitochondrial Membrane Protein–Associated Neurodegeneration

    Get PDF
    Background Mitochondrial membrane protein‐associated neurodegeneration is an autosomal‐recessive disorder caused by C19orf12 mutations and characterized by iron deposits in the basal ganglia. Objectives The aim of this study was to quantify iron concentrations in deep gray matter structures using quantitative susceptibility mapping MRI and to characterize metabolic abnormalities in the pyramidal pathway using 1H MR spectroscopy in clinically manifesting membrane protein‐associated neurodegeneration patients and asymptomatic C19orf12 gene mutation heterozygous carriers. Methods We present data of 4 clinically affected membrane protein‐associated neurodegeneration patients (mean age: 21.0 ± 2.9 years) and 9 heterozygous gene mutation carriers (mean age: 50.4 ± 9.8 years), compared to age‐matched healthy controls. MRI assessments were performed on a 7.0 Tesla whole‐body system, consisting of whole‐brain gradient‐echo scans and short echo time, single‐volume MR spectroscopy in the white matter of the precentral/postcentral gyrus. Quantitative susceptibility mapping, a surrogate marker for iron concentration, was performed using a state‐of‐the‐art multiscale dipole inversion approach with focus on the globus pallidus, thalamus, putamen, caudate nucleus, and SN. Results and Conclusion In membrane protein‐associated neurodegeneration patients, magnetic susceptibilities were 2 to 3 times higher in the globus pallidus (P = 0.02) and SN (P = 0.02) compared to controls. In addition, significantly higher magnetic susceptibility was observed in the caudate nucleus (P = 0.02). Non‐manifesting heterozygous mutation carriers exhibited significantly increased magnetic susceptibility (relative to controls) in the putamen (P = 0.003) and caudate nucleus (P = 0.001), which may be an endophenotypic marker of genetic heterozygosity. MR spectroscopy revealed significantly increased levels of glutamate, taurine, and the combined concentration of glutamate and glutamine in membrane protein‐associated neurodegeneration, which may be a correlate of corticospinal pathway dysfunction frequently observed in membrane protein‐associated neurodegeneration patients

    Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies

    Get PDF
    Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement.Methods We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms.Results We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%).Conclusions We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim

    Informal Caregiving in Amyotrophic Lateral Sclerosis (ALS): A High Caregiver Burden and Drastic Consequences on Caregivers’ Lives

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive autonomy loss and need for care. This does not only affect patients themselves, but also the patients’ informal caregivers (CGs) in their health, personal and professional lives. The big efforts of this multi-center study were not only to evaluate the caregivers’ burden and to identify its predictors, but it also should provide a specific understanding of the needs of ALS patients’ CGs and fill the gap of knowledge on their personal and work lives. Using standardized questionnaires, primary data from patients and their main informal CGs (n = 249) were collected. Patients’ functional status and disease severity were evaluated using the Barthel Index, the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) and the King’s Stages for ALS. The caregivers’ burden was recorded by the Zarit Burden Interview (ZBI). Comorbid anxiety and depression of caregivers were assessed by the Hospital Anxiety and Depression Scale. Additionally, the EuroQol Five Dimension Five Level Scale evaluated their health-related quality of life. The caregivers’ burden was high (mean ZBI = 26/88, 0 = no burden, ≥24 = highly burdened) and correlated with patients’ functional status (rp = −0.555, p < 0.001, n = 242). It was influenced by the CGs’ own mental health issues due to caregiving (+11.36, 95% CI [6.84; 15.87], p < 0.001), patients’ wheelchair dependency (+9.30, 95% CI [5.94; 12.66], p < 0.001) and was interrelated with the CGs’ depression (rp = 0.627, p < 0.001, n = 234), anxiety (rp = 0.550, p < 0.001, n = 234), and poorer physical condition (rp = −0.362, p < 0.001, n = 237). Moreover, female CGs showed symptoms of anxiety more often, which also correlated with the patients’ impairment in daily routine (rs = −0.280, p < 0.001, n = 169). As increasing disease severity, along with decreasing autonomy, was the main predictor of caregiver burden and showed to create relevant (negative) implications on CGs’ lives, patient care and supportive therapies should address this issue. Moreover, in order to preserve the mental and physical health of the CGs, new concepts of care have to focus on both, on not only patients but also their CGs and gender-associated specific issues. As caregiving in ALS also significantly influences the socioeconomic status by restrictions in CGs’ work lives and income, and the main reported needs being lack of psychological support and a high bureaucracy, the situation of CGs needs more attention. Apart from their own multi-disciplinary medical and psychological care, more support in care and patient management issues is required

    Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics.

    Get PDF
    Mutations in the nuclear-encoded mitochondrial maintenance gene RRM2B are an important cause of familial mitochondrial disease in both adults and children and represent the third most common cause of multiple mitochondrial DNA deletions in adults, following POLG [polymerase (DNA directed), gamma] and PEO1 (now called C10ORF2, encoding the Twinkle helicase) mutations. However, the clinico-pathological and molecular features of adults with RRM2B-related disease have not been clearly defined. In this multicentre study of 26 adult patients from 22 independent families, including five additional cases published in the literature, we show that extra-ocular neurological complications are common in adults with genetically confirmed RRM2B mutations. We also demonstrate a clear correlation between the clinical phenotype and the underlying genetic defect. Myopathy was a prominent manifestation, followed by bulbar dysfunction and fatigue. Sensorineural hearing loss and gastrointestinal disturbance were also important findings. Severe multisystem neurological disease was associated with recessively inherited compound heterozygous mutations with a mean age of disease onset at 7 years. Dominantly inherited heterozygous mutations were associated with a milder predominantly myopathic phenotype with a later mean age of disease onset at 46 years. Skeletal muscle biopsies revealed subsarcolemmal accumulation of mitochondria and/or cytochrome c oxidase-deficient fibres. Multiple mitochondrial DNA deletions were universally present in patients who underwent a muscle biopsy. We identified 18 different heterozygous RRM2B mutations within our cohort of patients, including five novel mutations that have not previously been reported. Despite marked clinical overlap between the mitochondrial maintenance genes, key clinical features such as bulbar dysfunction, hearing loss and gastrointestinal disturbance should help prioritize genetic testing towards RRM2B analysis, and sequencing of the gene may preclude performance of a muscle biopsy

    Распространенность болезни Помпе у пациентов с идиопатической гиперкреатинкиназемией и слабостью поясно-конечностных мышц (анализ 3076 случаев)*

    Get PDF
    .Проведен проспективный скрининг дефицита фермента кислой α-глюкозидазы (GAA) европейской когорты пациентов с гиперкреатинкиназемией (гиперКК) и / или слабостью поясно-конечностных мышц (СПКМ) неустановленной этиологии с помощью метода сухого пятна крови (dry blood spot, DBS).Материалы и методы. Образцы DBS были собраны у 3076 взрослых пациентов, проходивших обследование в 7 немецких и британских нервно-мышечных центрах. Все образцы были исследованы на дефицит GAA методом флуорометрии. При выявлении пониженной ферментативной активности определяли наличие мутации гена GAA.Результаты. Из 3076 образцов DBS в 232 (7,6 %) случаях обнаружена низкая ферментативная активность GAA. У 55 (24 %) из 232 пациентов наблюдали изолированную гиперКК, а у 176 (76 %) – гиперКК и СПКМ. При комбинации 2 признаков у 94 % больных активность GAA была снижена. Мутационный анализ выявил мутации гена GAA у 74 (2,4 %) пациентов, при этом 70 больных были гетерозиготными по распространенной мутации сайта сплайсинга гена GAA c.-32-13T&gt;G. У пациентов с подтвержденной болезнью Помпе основной симптомокомплекс состоял из СПКМ (85,3 %) в сочетании с дыхательной недостаточностью (61 %). У 12,0 % больных наблюдали изолированную гиперКК, а у 2,7 % – гиперКК и дыхательную недостаточность.Заключение. В большой когорте пациентов с гиперКК и / или СПКМ  распространенность болезни Помпе с поздним началом составляет 2,4 %, что требует проведения целевого скрининга активности GAA у пациентов с гиперКК и / или СПКМнеустановленной этиологии

    Multiomic ALS signatures highlight subclusters and sex differences suggesting the MAPK pathway as therapeutic target

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments
    corecore