479 research outputs found

    Project C.O.R.E.: Coaching Opportunities with Real Experiences

    Get PDF
    Retention and graduation rates of VCU men of color (MOC) is significantly lower than white men and women of color. Due to demonstrated significant attrition occurring after the sophomore year, Project C.O.R.E. (Coaching Opportunities with Real Experiences) is proposed as a sophomore-focused program that builds upon an existing freshman course on professional development for MOC. While the first-year course introduces students to a VCU support network, Project C.O.R.E. aims to increase university retention by expanding the student support network to members of the local community. Students are paired with community coaches, predominantly VCU alumni, to enhance their career and life-skills development. This program provides continued community, guidance, and support to encourage MOC to continue on the path to graduation

    Developmental changes in upper airway dynamics

    Get PDF
    Normal children have a less collapsible upper airway in response to subatmospheric pressure administration (P-NEG) during steep than normal adults do, and this upper airway response appears to be modulated by the central ventilatory drive. Children have a greater ventilatory drive than adults. We, therefore, hypothesized that children have increased neuromotor activation of their pharyngeal airway during sleep compared with adults. As infants have few obstructive apneas during steep, we hypothesized that infants would have an upper airway that was resistant to collapse. We, therefore, compared the upper airway pressure-flow (V) relationship during sleep between normal infants, prepubertal children, and adults. We evaluated the upper airway response to 1) intermittent, acute P-NEG (infants, children, and adults), and 2) hypercapnia (children and adults). We found that adults had a more collapsible upper airway during sleep than either infants or children. the children exhibited a vigorous response to both P-NEG and hypercapnia during sleep (P < 0.01), whereas adults had no significant change. Infants had an airway that was resistant to collapse and showed a very rapid response to P-NEG. We conclude that the upper airway is resistant to collapse during sleep in infants and children. Normal children have preservation of upper airway responses to P-NEG and hypercapnia during sleep, whereas responses are diminished in adults. Infants appear to have a different pattern of upper airway activation than older children. We speculate that the pharyngeal airway responses present in normal children are a compensatory response for a relatively narrow upper airway.Johns Hopkins Univ, Eudowood Div Pediat Resp Sci, Baltimore, MD 21287 USAJohns Hopkins Univ, Div Oncol Biostat, Baltimore, MD 21287 USAUniversidade Federal de São Paulo, Escola Paulista Med, Dept Neurol & Internal Med, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Neurol & Internal Med, São Paulo, BrazilWeb of Scienc

    Historical geography II: traces remain

    Get PDF
    The second report in this series turns to focus on the trace in relation to life-writing and biography in historical geography and beyond. Through attention to tracing journeys, located moments and listening to the presence of ghosts (Ogborn, 2005), this report seeks to highlight the range of different ways in which historical geographers have explored lives, deaths, and their transient traces through varied biographical terrains. Continuing to draw attention in historical geography to the darkest of histories, this piece will pivot on moments of discovering the dead to showcase the nuanced ways in which historical geography is opening doors into uncharted lives and unspoken histories

    Disturbed sleep is associated with reduced verbal episodic memory and entorhinal cortex volume in younger middle-aged women with risk-reducing early ovarian removal

    Get PDF
    INTRODUCTION: Women with early ovarian removal (&lt;48 years) have an elevated risk for both late-life Alzheimer's disease (AD) and insomnia, a modifiable risk factor. In early midlife, they also show reduced verbal episodic memory and hippocampal volume. Whether these reductions correlate with a sleep phenotype consistent with insomnia risk remains unexplored.METHODS: We recruited thirty-one younger middleaged women with risk-reducing early bilateral salpingo-oophorectomy (BSO), fifteen of whom were taking estradiol-based hormone replacement therapy (BSO+ERT) and sixteen who were not (BSO). Fourteen age-matched premenopausal (AMC) and seventeen spontaneously peri-postmenopausal (SM) women who were ~10y older and not taking ERT were also enrolled. Overnight polysomnography recordings were collected at participants' home across multiple nights (M=2.38 SEM=0.19), along with subjective sleep quality and hot flash ratings. In addition to group comparisons on sleep measures, associations with verbal episodic memory and medial temporal lobe volume were assessed.RESULTS: Increased sleep latency and decreased sleep efficiency were observed on polysomnography recordings of those not taking ERT, consistent with insomnia symptoms. This phenotype was also observed in the older women in SM, implicating ovarian hormone loss. Further, sleep latency was associated with more forgetting on the paragraph recall task, previously shown to be altered in women with early BSO. Both increased sleep latency and reduced sleep efficiency were associated with smaller anterolateral entorhinal cortex volume.DISCUSSION: Together, these findings confirm an association between ovarian hormone loss and insomnia symptoms, and importantly, identify an younger onset age in women with early ovarian removal, which may contribute to poorer cognitive and brain outcomes in these women.</p

    Recruitment strategies for sarcopenia trials – lessons from the LACE randomised controlled trial

    Get PDF
    Background: Sarcopenia is rarely diagnosed and is not recorded electronically in routine clinical care, posing challenges to trial recruitment. We describe the performance of four components of a strategy to efficiently recruit participants with sarcopenia to a trial of perindopril and/or leucine for sarcopenia: primary care vs. hospital recruitment, a comparison of central vs. local telephone pre-screening, performance of a questionnaire on physical function conducted as part of the pre-screening telephone call, and performance of bioimpedance measurement to identify low muscle mass. Methods: Hospital-based recruitment took place through inpatient and outpatient geriatric medicine services. Local research nurses reviewed medical notes and approached potentially eligible patients. Primary care recruitment reviewed primary care lists from collaborating practices, sending mailshots to patients aged 70 and over who were not taking angiotensin-converting enzyme inhibitors. Telephone pre-screening was conducted either by research nurses at each site or centrally by Tayside Clinical Trials Unit. The 10-point SARC-F questionnaire was used for pre-screening. De-identified recruitment information was held on a central electronic tracking system and analysed using SPSS. Bioimpedance was measured using the Akern BIA 101 system, with the Sergi equation used to estimate lean mass. Results: Fourteen UK sites recruited to the trial. The 1202 sets of notes in hospital-based care were reviewed at these sites; 7 participants (0.6% of total notes screened) were randomized. From primary care, 13 808 invitations were sent; 138 (1.0% of total invited) were randomized. 633/2987 primary care respondents were pre-screened centrally; the mean number of calls per respondent was 2.3. For 10 sites where central and local pre-screening could be compared, the conversion rate from pre-screening to randomization was 18/588 (3.1%) for centralized calls, compared with 73/1814 (4.0%) for local pre-screening calls (P = 0.29). A weak relationship was seen between higher (worse) SARC-F score at screening and lower likelihood of progression to randomization (r = −0.08, P = 0.03). Muscle mass estimates generated using the Sergi equation were systematically biased, and a recalibrated equation for bioimpedance-estimated muscle mass was derived. Conclusions: Primary care recruitment led to higher response rates and overall numbers randomized than hospital-based recruitment. Centralized pre-screening saved local research nurses' time but did not improve conversion to randomization. SARC-F did not help to target screening activity in this sarcopenia trial, and a recalibration of the equation for estimating muscle mass from bioimpedance measures may improve accuracy of the screening process

    Increasing physical activity in postpartum multiethnic women in Hawaii: results from a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mothers of an infant are much less likely to exercise regularly compared to other women. This study tested the efficacy of a brief tailored intervention to increase physical activity (PA) in women 3–12 months after childbirth. The study used a pretest-posttest design. Sedentary women (n = 20) were recruited from a parenting organization. Half the participants were ethnic minorities, mean age was 33 ± 3.8, infants' mean age was 6.9 ± 2.4 months, 50% were primiparas, and mean body mass index was 23.6 ± 4.2.</p> <p>Methods</p> <p>The two-month intervention included telephone counseling, pedometers, referral to community PA resources, social support, email advice on PA/pedometer goals, and newsletters.</p> <p>The primary outcome of the study was minutes per week of moderate and vigorous leisure-time physical activity measured by the Godin physical activity instrument.</p> <p>Results</p> <p>All women (100%) returned for post-test measures; thus, paired t-tests were used for pre-post increase in minutes of moderate and vigorous leisure-time physical activity and comparisons of moderate and vigorous leisure-time physical activity increases among ethnic groups. At baseline participants' reported a mean of 3 ± 13.4 minutes per week moderate and vigorous leisure-time physical activity. At post-test this significantly increased to 85.5 ± 76.4 minutes per week of moderate and vigorous leisure-time physical activity (p < .001, Cohen's d = 2.2; effect size r = 0.7). There were no differences in pre to post increases in minutes of moderate and vigorous leisure-time physical activity among races.</p> <p>Conclusion</p> <p>A telephone/email intervention tailored to meet the needs of postpartum women was effective in increasing physical activity levels. However, randomized trials comparing tailored telephone and email interventions to standard care and including long-term follow-up to determine maintenance of physical activity are warranted.</p

    Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 "ISMRM Imaging Neurofluids Study group" Workshop in Rome

    Get PDF
    Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1. Technical Efficacy: Stage 3

    Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 “<scp>ISMRM</scp> Imaging Neurofluids Study group” Workshop in Rome

    Get PDF
    Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three‐day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery.Evidence level: 1Technical Efficacy: Stage
    corecore