1,935 research outputs found

    Large-scale photonic Ising machine by spatial light modulation

    Full text link
    Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultra-fast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagnetic-like phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.Comment: https://journals.aps.org/prl/accepted/7007eYb7N091546c41ad4108828a97d5f92006df

    Adiabatic evolution on a spatial-photonic Ising machine

    Get PDF
    Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and enforced by optical vector-matrix multiplications and scalable photonic technology.Comment: 9 pages, 4 figure

    Benchmark calculation of p-3H and n-3He scattering

    Get PDF
    p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been employed and their results for both elastic and charge-exchange processes are compared. We observe a good agreement between the three different methods, thus the obtained results may serve as a benchmark. A comparison with the available experimental data is also reported and discussed.Comment: 13 pages, 6 figures. arXiv admin note: text overlap with arXiv:1109.362

    Perioperative Bluttransfusion: Nutzen, Risiken und Richtlinien

    Get PDF
    Zusammenfassung: Chirurgisch und traumatisch bedingte Blutverluste sind die häufigsten Ursachen von allogenen Bluttransfusionen, welche nach wie vor mit beträchtlichen Risiken verbunden sind. Nach Korrektur der Hypovolämie ist der Anästhesist häufig mit einer normovolämischen Anämie konfrontiert. Die klinische Relevanz dieses isolierten Hämoglobinabfalls besteht darin, dass die globale und/oder regionale Sauerstoffversorgung über eine kritische Schwelle hinaus beeinträchtigt sein kann, wonach sich eine Gewebshypoxie einstellt. Diese kritische Schwelle ist von Patient zu Patient verschieden und abhängig von dessen Kapazität, den Abfall des Sauerstoffgehaltes zu kompensieren. Aus diesem Grunde sollten primär physiologische Transfusionskriterien angewandt werden und nicht rigide nummerische Transfusionskriterien wie die Hämoglobinkonzentration, welche die individuelle Reserve eines Patienten weitgehend außer Acht lasse

    Urgent reoperative transapical valve-in-valve shortly after a transapical aortic valve implantation.

    Get PDF
    Urgent reoperative transapical aortic valve-in-valve has never been proposed as a treatment option in case of a failed transcatheter aortic valve implantation (TAVI) or in case of worsening of an existing paravalvular leak, if this complication occurs right after, or a few days after, the primary transapical aortic valve implantation. Experienced surgeons should argue that after a transapical TAVI, the apex is damaged and fragile, with a high risk of irreparable ventricular tears and life-threatening bleeding if a second transapical procedure is scheduled during the acute phase. Nevertheless, if the patient is inoperable and the vascular status, including the ascending aorta, limits alternative accesses, the urgent reoperative transapical valve-in-valve becomes an alternative. We illustrate, for the first time ever, our experience with an 81-year old female patient who underwent a transapical (TA) TAVI with a Sapien? XT 23 mm. The day after the procedure, the patient haemodynamically worsened in combination with a worsening of a known (grade 1-2) paravalvular leak. Thus, on postoperative day two, an urgent transapical valve-in-valve was performed, and a second Sapien? XT 23 mm was placed, with an excellent haemodynamic result and absence of leak. The redo apical access did not appear very complicated and the postoperative recovery was uneventful

    Noise-enhanced spatial-photonic Ising machine

    Get PDF
    Ising machines are novel computing devices for the energy minimization of Ising models. These combinatorial optimization problems are of paramount importance for science and technology, but remain difficult to tackle on large scale by conventional electronics. Recently, various photonics-based Ising machines demonstrated fast computing of a Ising ground state by data processing through multiple temporal or spatial optical channels. Experimental noise acts as a detrimental effect in many of these devices. On the contrary, here we demonstrate that an optimal noise level enhances the performance of spatial-photonic Ising machines on frustrated spin problems. By controlling the error rate at the detection, we introduce a noisy-feedback mechanism in an Ising machine based on spatial light modulation. We investigate the device performance on systems with hundreds of individually-addressable spins with all-to-all couplings and we found an increased success probability at a specific noise level. The optimal noise amplitude depends on graph properties and size, thus indicating an additional tunable parameter helpful in exploring complex energy landscapes and in avoiding getting stuck in local minima. Our experimental results identify noise as a potentially valuable resource for optical computing. This concept, which also holds in different nanophotonic neural networks, may be crucial in developing novel hardware with optics-enabled parallel architecture for large-scale optimizations

    Antibody-drug conjugates (ADC) against cancer stem-like cells (CSC) - Is there still room for optimism?

    Get PDF
    Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with peculiar functionalities that distinguish them from the bulk of tumor cells, most notably their tumor-initiating potential and drug resistance. Given these properties, it appears logical that CSCs have become an important target for many pharma companies. Antibody-drug conjugates (ADC) have emerged over the last decade as one of the most promising new tools for the selective ablation of tumor cells. Three ADCs have already received regulatory approval and many others are in different phases of clinical development. Not surprisingly, also a considerable number of anti-CSC ADCs have been described in the literature and some of these have entered clinical development. Several of these ADCs, however, have yielded disappointing results in clinical studies. This is similar to the results obtained with other anti-CSC drug candidates, including native antibodies, that have been investigated in the clinic. In this article we review the anti-CSC ADCs that have been described in the literature and, in the following, we discuss reasons that may underlie the failures in clinical trials that have been observed. Possible reasons relate to the biology of CSCs themselves, including their heterogeneity, the lack of strictly CSC-specific markers, and the capacity to interconvert between CSCs and non-CSCs; second, inherent limitations of some classes of cytotoxins that have been used for the construction of ADCs; third, the inadequacy of animal models in predicting efficacy in humans. We conclude suggesting some possibilities to address these limitations
    corecore