1,935 research outputs found
Large-scale photonic Ising machine by spatial light modulation
Quantum and classical physics can be used for mathematical computations that
are hard to tackle by conventional electronics. Very recently, optical Ising
machines have been demonstrated for computing the minima of spin Hamiltonians,
paving the way to new ultra-fast hardware for machine learning. However, the
proposed systems are either tricky to scale or involve a limited number of
spins. We design and experimentally demonstrate a large-scale optical Ising
machine based on a simple setup with a spatial light modulator. By encoding the
spin variables in a binary phase modulation of the field, we show that light
propagation can be tailored to minimize an Ising Hamiltonian with spin
couplings set by input amplitude modulation and a feedback scheme. We realize
configurations with thousands of spins that settle in the ground state in a
low-temperature ferromagnetic-like phase with all-to-all and tunable pairwise
interactions. Our results open the route to classical and quantum photonic
Ising machines that exploit light spatial degrees of freedom for parallel
processing of a vast number of spins with programmable couplings.Comment: https://journals.aps.org/prl/accepted/7007eYb7N091546c41ad4108828a97d5f92006df
Adiabatic evolution on a spatial-photonic Ising machine
Combinatorial optimization problems are crucial for widespread applications
but remain difficult to solve on a large scale with conventional hardware.
Novel optical platforms, known as coherent or photonic Ising machines, are
attracting considerable attention as accelerators on optimization tasks
formulable as Ising models. Annealing is a well-known technique based on
adiabatic evolution for finding optimal solutions in classical and quantum
systems made by atoms, electrons, or photons. Although various Ising machines
employ annealing in some form, adiabatic computing on optical settings has been
only partially investigated. Here, we realize the adiabatic evolution of
frustrated Ising models with 100 spins programmed by spatial light modulation.
We use holographic and optical control to change the spin couplings
adiabatically, and exploit experimental noise to explore the energy landscape.
Annealing enhances the convergence to the Ising ground state and allows to find
the problem solution with probability close to unity. Our results demonstrate a
photonic scheme for combinatorial optimization in analogy with adiabatic
quantum algorithms and enforced by optical vector-matrix multiplications and
scalable photonic technology.Comment: 9 pages, 4 figure
Benchmark calculation of p-3H and n-3He scattering
p-3H and n-3He scattering in the energy range above the n-3He but below the
d-d thresholds is studied by solving the 4-nucleon problem with a realistic
nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and
Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been employed
and their results for both elastic and charge-exchange processes are compared.
We observe a good agreement between the three different methods, thus the
obtained results may serve as a benchmark. A comparison with the available
experimental data is also reported and discussed.Comment: 13 pages, 6 figures. arXiv admin note: text overlap with
arXiv:1109.362
Perioperative Bluttransfusion: Nutzen, Risiken und Richtlinien
Zusammenfassung: Chirurgisch und traumatisch bedingte Blutverluste sind die häufigsten Ursachen von allogenen Bluttransfusionen, welche nach wie vor mit beträchtlichen Risiken verbunden sind. Nach Korrektur der Hypovolämie ist der Anästhesist häufig mit einer normovolämischen Anämie konfrontiert. Die klinische Relevanz dieses isolierten Hämoglobinabfalls besteht darin, dass die globale und/oder regionale Sauerstoffversorgung über eine kritische Schwelle hinaus beeinträchtigt sein kann, wonach sich eine Gewebshypoxie einstellt. Diese kritische Schwelle ist von Patient zu Patient verschieden und abhängig von dessen Kapazität, den Abfall des Sauerstoffgehaltes zu kompensieren. Aus diesem Grunde sollten primär physiologische Transfusionskriterien angewandt werden und nicht rigide nummerische Transfusionskriterien wie die Hämoglobinkonzentration, welche die individuelle Reserve eines Patienten weitgehend außer Acht lasse
Urgent reoperative transapical valve-in-valve shortly after a transapical aortic valve implantation.
Urgent reoperative transapical aortic valve-in-valve has never been proposed as a treatment option in case of a failed transcatheter aortic valve implantation (TAVI) or in case of worsening of an existing paravalvular leak, if this complication occurs right after, or a few days after, the primary transapical aortic valve implantation. Experienced surgeons should argue that after a transapical TAVI, the apex is damaged and fragile, with a high risk of irreparable ventricular tears and life-threatening bleeding if a second transapical procedure is scheduled during the acute phase. Nevertheless, if the patient is inoperable and the vascular status, including the ascending aorta, limits alternative accesses, the urgent reoperative transapical valve-in-valve becomes an alternative. We illustrate, for the first time ever, our experience with an 81-year old female patient who underwent a transapical (TA) TAVI with a Sapien? XT 23 mm. The day after the procedure, the patient haemodynamically worsened in combination with a worsening of a known (grade 1-2) paravalvular leak. Thus, on postoperative day two, an urgent transapical valve-in-valve was performed, and a second Sapien? XT 23 mm was placed, with an excellent haemodynamic result and absence of leak. The redo apical access did not appear very complicated and the postoperative recovery was uneventful
Noise-enhanced spatial-photonic Ising machine
Ising machines are novel computing devices for the energy minimization of Ising models. These combinatorial optimization problems are of paramount importance for science and technology, but remain difficult to tackle on large scale by conventional electronics. Recently, various photonics-based Ising machines demonstrated fast computing of a Ising ground state by data processing through multiple temporal or spatial optical channels. Experimental noise acts as a detrimental effect in many of these devices. On the contrary, here we demonstrate that an optimal noise level enhances the performance of spatial-photonic Ising machines on frustrated spin problems. By controlling the error rate at the detection, we introduce a noisy-feedback mechanism in an Ising machine based on spatial light modulation. We investigate the device performance on systems with hundreds of individually-addressable spins with all-to-all couplings and we found an increased success probability at a specific noise level. The optimal noise amplitude depends on graph properties and size, thus indicating an additional tunable parameter helpful in exploring complex energy landscapes and in avoiding getting stuck in local minima. Our experimental results identify noise as a potentially valuable resource for optical computing. This concept, which also holds in different nanophotonic neural networks, may be crucial in developing novel hardware with optics-enabled parallel architecture for large-scale optimizations
Antibody-drug conjugates (ADC) against cancer stem-like cells (CSC) - Is there still room for optimism?
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with peculiar functionalities that distinguish them from the bulk of tumor cells, most notably their tumor-initiating potential and drug resistance. Given these properties, it appears logical that CSCs have become an important target for many pharma companies. Antibody-drug conjugates (ADC) have emerged over the last decade as one of the most promising new tools for the selective ablation of tumor cells. Three ADCs have already received regulatory approval and many others are in different phases of clinical development. Not surprisingly, also a considerable number of anti-CSC ADCs have been described in the literature and some of these have entered clinical development. Several of these ADCs, however, have yielded disappointing results in clinical studies. This is similar to the results obtained with other anti-CSC drug candidates, including native antibodies, that have been investigated in the clinic. In this article we review the anti-CSC ADCs that have been described in the literature and, in the following, we discuss reasons that may underlie the failures in clinical trials that have been observed. Possible reasons relate to the biology of CSCs themselves, including their heterogeneity, the lack of strictly CSC-specific markers, and the capacity to interconvert between CSCs and non-CSCs; second, inherent limitations of some classes of cytotoxins that have been used for the construction of ADCs; third, the inadequacy of animal models in predicting efficacy in humans. We conclude suggesting some possibilities to address these limitations
- …