684 research outputs found

    Pheochromocytoma – clinical manifestations, diagnosis and current perioperative management

    Get PDF
    Pheochromocytoma is a neuroendocrine tumor characterized by the excessive production of catecholamines (epinephrine, norepinephrine, and dopamine). The diagnosis is suspected due to hypertensive paroxysms, associated with vegetative phenomena, due to the catecholaminergic hypersecretion. Diagnosis involves biochemical tests that reveal elevated levels of catecholamine metabolites (metanephrine and normetanephrine). Functional imaging, such as 123I-metaiodobenzylguanidine scintigraphy (123I-MIBG), has increased specificity in identifying the catecholamine-producing tumor and its metastases. The gold-standard treatment for patients with pheochromocytoma is represented by the surgical removal of the tumor. Before surgical resection, it is important to optimize blood pressure and intravascular volume in order to avoid negative hemodynamic events

    Uqosp(2,2)U_q osp(2,2) Lattice Models

    Full text link
    In this paper I construct lattice models with an underlying Uqosp(2,2)U_q osp(2,2) superalgebra symmetry. I find new solutions to the graded Yang-Baxter equation. These {\it trigonometric} RR-matrices depend on {\it three} continuous parameters, the spectral parameter, the deformation parameter qq and the U(1)U(1) parameter, bb, of the superalgebra. It must be emphasized that the parameter qq is generic and the parameter bb does not correspond to the `nilpotency' parameter of \cite{gs}. The rational limits are given; they also depend on the U(1)U(1) parameter and this dependence cannot be rescaled away. I give the Bethe ansatz solution of the lattice models built from some of these RR-matrices, while for other matrices, due to the particular nature of the representation theory of osp(2,2)osp(2,2), I conjecture the result. The parameter bb appears as a continuous generalized spin. Finally I briefly discuss the problem of finding the ground state of these models.Comment: 19 pages, plain LaTeX, no figures. Minor changes (version accepted for publication

    Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events

    Full text link
    In this paper we present a fresh look at the problem of summarizing evolving events from multiple sources. After a discussion concerning the nature of evolving events we introduce a distinction between linearly and non-linearly evolving events. We present then a general methodology for the automatic creation of summaries from evolving events. At its heart lie the notions of Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the identification of similarities and differences between sources, from a synchronical and diachronical perspective. SDRs do not connect documents or textual elements found therein, but structures one might call messages. Applying this methodology will yield a set of messages and relations, SDRs, connecting them, that is a graph which we call grid. We will show how such a grid can be considered as the starting point of a Natural Language Generation System. The methodology is evaluated in two case-studies, one for linearly evolving events (descriptions of football matches) and another one for non-linearly evolving events (terrorist incidents involving hostages). In both cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent Information System

    Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    Get PDF
    Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12, where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online at http://www.sternwarte.uni-erlangen.de/research/cyclo.Comment: A&A, in pres

    Canonical formulation of N = 2 supergravity in terms of the Ashtekar variable

    Full text link
    We reconstruct the Ashtekar's canonical formulation of N = 2 supergravity (SUGRA) starting from the N = 2 chiral Lagrangian derived by closely following the method employed in the usual SUGRA. In order to get the full graded algebra of the Gauss, U(1) gauge and right-handed supersymmetry (SUSY) constraints, we extend the internal, global O(2) invariance to local one by introducing a cosmological constant to the chiral Lagrangian. The resultant Lagrangian does not contain any auxiliary fields in contrast with the 2-form SUGRA and the SUSY transformation parameters are not constrained at all. We derive the canonical formulation of the N = 2 theory in such a manner as the relation with the usual SUGRA be explicit at least in classical level, and show that the algebra of the Gauss, U(1) gauge and right-handed SUSY constraints form the graded algebra, G^2SU(2)(Osp(2,2)). Furthermore, we introduce the graded variables associated with the G^2SU(2)(Osp(2,2)) algebra and we rewrite the canonical constraints in a simple form in terms of these variables. We quantize the theory in the graded-connection representation and discuss the solutions of quantum constraints.Comment: 19 pages, Latex, corrected some typos and added a referenc

    Multi-particle structure in the Z_n-chiral Potts models

    Full text link
    We calculate the lowest translationally invariant levels of the Z_3- and Z_4-symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N <= 12 and N <= 10 sites, respectively, and extrapolating N to infinity. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z_n-charges Q = 1, ... , n-1 (mass m_Q), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m_Q = Q m_1. Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z_n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P_m=(1-2Q/n)/\phi, where \phi is the chiral angle and Q is the Z_n-charge of the respective particle.Comment: 22 pages (LaTeX) plus 5 figures (included as PostScript), BONN-HE-92-3

    Loop algorithms for quantum simulations of fermion models on lattices

    Full text link
    Two cluster algorithms, based on constructing and flipping loops, are presented for worldline quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard worldline algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary worldline algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-UU regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use non-local moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions is briefly discussed.Comment: 36 pages, RevTex ver.

    Pheochromocytoma – clinical manifestations, diagnosis and current perioperative management

    Get PDF
    Pheochromocytoma is a neuroendocrine tumor characterized by the excessive production of catecholamines (epinephrine, norepinephrine, and dopamine). The diagnosis is suspected due to hypertensive paroxysms, associated with vegetative phenomena, due to the catecholaminergic hypersecretion. Diagnosis involves biochemical tests that reveal elevated levels of catecholamine metabolites (metanephrine and normetanephrine). Functional imaging, such as 123I-metaiodobenzylguanidine scintigraphy (123I-MIBG), has increased specificity in identifying the catecholamine-producing tumor and its metastases. The gold-standard treatment for patients with pheochromocytoma is represented by the surgical removal of the tumor. Before surgical resection, it is important to optimize blood pressure and intravascular volume in order to avoid negative hemodynamic events

    The role of winding numbers in quantum Monte Carlo simulations

    Full text link
    We discuss the effects of fixing the winding number in quantum Monte Carlo simulations. We present a simple geometrical argument as well as strong numerical evidence that one can obtain exact ground state results for periodic boundary conditions without changing the winding number. However, for very small systems the temperature has to be considerably lower than in simulations with fluctuating winding numbers. The relative deviation of a calculated observable from the exact ground state result typically scales as TÎłT^{\gamma}, where the exponent Îł\gamma is model and observable dependent and the prefactor decreases with increasing system size. Analytic results for a quantum rotor model further support our claim.Comment: 5 pages, 5 figure
    • …
    corecore