Abstract

In this paper I construct lattice models with an underlying Uqosp(2,2)U_q osp(2,2) superalgebra symmetry. I find new solutions to the graded Yang-Baxter equation. These {\it trigonometric} RR-matrices depend on {\it three} continuous parameters, the spectral parameter, the deformation parameter qq and the U(1)U(1) parameter, bb, of the superalgebra. It must be emphasized that the parameter qq is generic and the parameter bb does not correspond to the `nilpotency' parameter of \cite{gs}. The rational limits are given; they also depend on the U(1)U(1) parameter and this dependence cannot be rescaled away. I give the Bethe ansatz solution of the lattice models built from some of these RR-matrices, while for other matrices, due to the particular nature of the representation theory of osp(2,2)osp(2,2), I conjecture the result. The parameter bb appears as a continuous generalized spin. Finally I briefly discuss the problem of finding the ground state of these models.Comment: 19 pages, plain LaTeX, no figures. Minor changes (version accepted for publication

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020