34 research outputs found

    Introducing the Concept of Hyperconnected Mobile Production

    Get PDF
    Many globalized businesses are trying to cope with growing competition by strategically expanding their dedicated network of production facilities so as to be able to offer and to deliver time and price competitive offers to their clients across the world. In this paper, exploiting Physical Internet principles, we introduce the concept of hyperconnected mobile production that can alternatively enable businesses to dynamically expand and contract as necessary their production capacity in regions worldwide. First, hyperconnected mobile production exploits open fabs from multiple parties readily available in those regions. Second, these fabs are to rely on plug-and-play production modules. These modules are to be flowed in and out of open fabs worldwide by the fab operators or their business clients so as to absorb dynamic production requirements from customers. Third, the production modules are to be dynamically re-configurable through adding and removing plug-and-play modular resources. We first show that hyperconnected mobile production builds on eight innovation threads: distributed, outsourced, on-demand, modular, additive, mobile, containerized and hyperconnected production. We then provide an overall description of key facets of the hyperconnected mobile production concept and finally elicit a number of promising research avenues

    Refurburshing and Recycling Facilities Design Methodology

    Get PDF
    To design a facility, expected flows between the resources is one of the most important input. Flows are usually calculated given some statistics of previous periods or from the expected demand and the process required. However, in a refurbishing and recycling facility, flows are very fluctuating and not trivial to predict. The quantity produced by such facility not only depends on the demand but also on the supplies which are returned products under guaranty or discarded products after their end-of-use. The uncertainty and the variability on these supplies are often higher than the one on the demand which makes it even more complex to calculate the expected flows. This article contributes a methodology for designing such recycling and refurbishing facilities that are concurrently efficient and robust. It provides an empirical illustration of the methodology through a computer refurbishing and recycling facility case study

    Grid Facilities Design: Dynamic Modular Deployment of Production, Handling and Storage Resources

    Get PDF
    To survive and thrive in a fast-moving environment, facilities must be designed to show adaptability, flexibility and robustness. As some facilities are depicted by heavy and sophisticated equipment costly and hard to displace, others are composed of moveable workstations with highly flexible workers. In most cases, the trade-off is between the cost of redeploying the resources and the excessive cost of material handling and storage incurred by an inefficient deployment of the resources. We propose a design strategy based on (1) conceiving and designing the facility as a stable grid of modules, (2) dynamically deploying production, storage and handling resources to these modules, and (3) dynamically assigning process-product combinations to the modules so as to meet stochastic and dynamically evolving product demand on a rolling planning horizon. We illustrate the strategy as applied to a computer refurbishing and recycling facility

    Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development

    Get PDF
    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development

    La maison Prévost, élément indissociable du paysage jérômien

    No full text
    corecore