70 research outputs found

    Solvability of the G_2 Integrable System

    Full text link
    It is shown that the 3-body trigonometric G_2 integrable system is exactly-solvable. If the configuration space is parametrized by certain symmetric functions of the coordinates then, for arbitrary values of the coupling constants, the Hamiltonian can be expressed as a quadratic polynomial in the generators of some Lie algebra of differential operators in a finite-dimensional representation. Four infinite families of eigenstates, represented by polynomials, and the corresponding eigenvalues are described explicitly.Comment: 18 pages, LaTeX, some minor typos correcte

    Noncommutative Field Theory from Quantum Mechanical Space-Space Noncommutativity

    Full text link
    We investigate the incorporation of space noncommutativity into field theory by extending to the spectral continuum the minisuperspace action of the quantum mechanical harmonic oscillator propagator with an enlarged Heisenberg algebra. In addition to the usual \star-product deformation of the algebra of field functions, we show that the parameter of noncommutativity can occur in noncommutative field theory even in the case of free fields without self-interacting potentials.Comment: 13 page

    Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Get PDF
    In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007), 10367-10382, hep-th/0611160] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics) where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985), 288-315, 316-333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987), 319-328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.Comment: This is a contribution to the Special Issue on Deformation Quantization, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Variational Approach to Gaussian Approximate Coherent States: Quantum Mechanics and Minisuperspace Field Theory

    Get PDF
    This paper has a dual purpose. One aim is to study the evolution of coherent states in ordinary quantum mechanics. This is done by means of a Hamiltonian approach to the evolution of the parameters that define the state. The stability of the solutions is studied. The second aim is to apply these techniques to the study of the stability of minisuperspace solutions in field theory. For a λφ4\lambda \varphi^4 theory we show, both by means of perturbation theory and rigorously by means of theorems of the K.A.M. type, that the homogeneous minisuperspace sector is indeed stable for positive values of the parameters that define the field theory.Comment: 26 pages, Plain TeX, no figure

    Wigner Method in Quantum Statistical Mechanics

    Full text link
    The Wigner method of transforming quantum‐mechanical operators into their phase‐space analogs is reviewed with applications to scattering theory, as well as to descriptions of the equilibrium and dynamical states of many‐particle systems. Inclusion of exchange effects is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71122/2/JMAPAQ-8-5-1097-1.pd
    corecore