12,818 research outputs found

    The effect of radiative gravitational modes on the dynamics of a cylindrical shell of counter rotating particles

    Get PDF
    In this paper we consider some aspects of the relativistic dynamics of a cylindrical shell of counter rotating particles. In some sense these are the simplest systems with a physically acceptable matter content that display in a well defined sense an interaction with the radiative modes of the gravitational field. These systems have been analyzed previously, but in most cases resorting to approximations, or considering a particular form for the initial value data. Here we show that there exists a family of solutions where the space time inside the shell is flat and the equation of motion of the shell decouples completely from the gravitational modes. The motion of the shell is governed by an equation of the same form as that of a particle in a time independent one dimensional potential. We find that under appropriate initial conditions one can have collapsing, bounded periodic, and unbounded motions. We analyze and solve also the linearized equations that describe the dynamics of the system near a stable static solutions, keeping a regular interior. The surprising result here is that the motion of the shell is completely determined by the configuration of the radiative modes of the gravitational field. In particular, there are oscillating solutions for any chosen period, in contrast with the "approximately Newtonian plus small radiative corrections" motion expectation. We comment on the physical meaning of these results and provide some explicit examples. We also discuss the relation of our results to the initial value problem for the linearized dynamics of the shell

    Perturbative evolution of the static configurations, quasinormal modes and quasi normal ringing in the Apostolatos - Thorne cylindrical shell model

    Get PDF
    We study the perturbative evolution of the static configurations, quasinormal modes and quasi normal ringing in the Apostolatos - Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness we obtain a proof of the stability of static solutions under this type of perturbations. The explicit expression for the mode expansion are then used to obtain numerical values for some of the quasi normal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasi normal ringing displayed by the solutions is found to be in agreement with quasi normal modes found previously. Going back to the full relativistic equations of motion we find their general linear form by expanding to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary values problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasi normal ringing that results in the evolution of the system. We also discuss the relation of the present work to some recent results on the same model that have appeared in the literature.Comment: 27 pages, 7 figure

    La boîte à outils géotechnique de demain: conception des structures géotechniques selon EN 1997: 202x

    Get PDF
    This paper shows how three new concepts – ‘Design Cases’ (introduced in prEN 1990), the ‘Geotechnical Design Model’ (prEN 1997-1), and the ‘Ground Model’ (prEN 1997-2) – are combined (in prEN 1997-3) to provide a comprehensive and flexible set of tools for the design of specific geotechnical structures. The paper presents flow charts divided between: a) reliability management, b) ground modelling, c) verification of the design, and d) structure execution, which provide guidelines for navigating prEN 1990 and prEN 1997.Postprint (published version

    Thermodynamics of the Antiferromagnetic Heisenberg Model on the Checkerboard Lattice

    Full text link
    Employing numerical linked-cluster expansions (NLCEs) along with exact diagonalizations of finite clusters with periodic boundary condition, we study the energy, specific heat, entropy, and various susceptibilities of the antiferromagnetic Heisenberg model on the checkerboard lattice. NLCEs, combined with extrapolation techniques, allow us to access temperatures much lower than those accessible to exact diagonalization and other series expansions. We find that the high-temperature peak in specific heat decreases as the frustration increases, consistent with the large amount of unquenched entropy in the region around maximum classical frustration, where the nearest-neighbor and next-nearest neighbor exchange interactions (J and J', respectively) have the same strength, and with the formation of a second peak at lower temperatures. The staggered susceptibility shows a change of character when J' increases beyond 0.75J, implying the disappearance of the long-range antiferromagnetic order at zero temperature. For J'=4J, in the limit of weakly coupled crossed chains, we find large susceptibilities for stripe and Neel order with Q=(pi/2,pi/2) at low temperatures with antiferromagnetic correlations along the chains. Other magnetic and bond orderings, such as a plaquette valence-bond solid and a crossed-dimer order suggested by previous studies, have also been investigated.Comment: 10 pages, 13 figure

    One-loop conformal anomaly in an implicit momentum space regularization framework

    Full text link
    In this paper we consider matter fields in a gravitational background in order to compute the breaking of the conformal current at one-loop order. Standard perturbative calculations of conformal symmetry breaking expressed by the non-zero trace of the energy-momentum tensor have shown that some violating terms are regularization dependent, which may suggest the existence of spurious breaking terms in the anomaly. Therefore, we perform the calculation in a momentum space regularization framework in which regularization dependent terms are judiciously parametrized. We compare our results with those obtained in the literature and conclude that there is an unavoidable arbitrariness in the anomalous term â–¡R\Box R.Comment: in European Physical Journal C, 201
    • …
    corecore