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In this paper we consider some aspects of the relativistic dynamics of a cylindrical shell of counter-

rotating particles. In some sense these are the simplest systems with a physically acceptable matter content

that display in a well-defined sense an interaction with the radiative modes of the gravitational field. These

systems have been analyzed previously, but in most cases resorting to approximations, or considering a

particular form for the initial value data. Here we show that there exists a family of solutions where the

space time inside the shell is flat and the equation of motion of the shell decouples completely from the

gravitational modes. The motion of the shell is governed by an equation of the same form as that of a

particle in a time-independent one-dimensional potential. We find that under appropriate initial conditions

one can have collapsing, bounded periodic, and unbounded motions. We analyze and solve also the

linearized equations that describe the dynamics of the system near a stable static solutions, keeping a

regular interior. The surprising result here is that the motion of the shell is completely determined by the

configuration of the radiative modes of the gravitational field. In particular, there are oscillating solutions

for any chosen period, in contrast with the ‘‘approximately Newtonian plus small radiative corrections’’

motion expectation. We comment on the physical meaning of these results and provide some explicit

examples. We also discuss the relation of our results to the initial value problem for the linearized

dynamics of the shell.
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I. INTRODUCTION

In this paper we consider some aspects of the relativistic
dynamics of a cylindrical shell of counterrotating particles.
In some sense these are the simplest systems with a physi-
cally acceptable matter content that display in a well-
defined sense an interaction with the radiative modes of
the gravitational field. The dynamics of these systems was
analyzed originally by Apostolatos and Thorne [1], but the
evolution was considered in detail only over very short
periods of time, and imposing a particular form for the
initial data, the ‘‘momentarily static radiation free’’
(MSRF) form [2], and the question of the general evolution
in time of the system has remained largely unexplored. We
notice that most of the literature that followed the work of
Apostolatos and Thorne has concentrated on the problem
of collapse (see, for instance, [4,5]), and in general impos-
ing particular forms for the fields, that may include also
some form of nongravitational radiation outside the shell
(see, for instance, [6,7] or [8]). In a recent paper Hamity,
Barraco and Cécere [9], have considered again the relativ-
istic dynamics of these systems. In particular, since the
system may have stable static configuration, and in the
Newtonian limit small departures form the static configu-
ration lead to periodic motions, it was expected that in the
fully relativistic dynamics the inclusion of gravitational
radiation modes should lead to a damping of these

oscillations, through some form of ‘‘radiation reaction.’’
This expectation appears to be satisfied in the numerical
solutions obtained in [9]. A closer analysis reveals, how-
ever, that the authors assumed an approximation where the
back reaction of the radiative modes is essentially disre-
garded. This approximation would be justified if the cou-
pling to the gravitational radiation modes had only a small
effect on the dynamics of the shell. It turns out, however, as
is shown in the present paper, that rather the opposite
situation holds, and the dynamics is completely dominated
by the behavior of these modes. In fact we find that, in
some sense, the coupling of the shell to the gravitational
radiation modes is as strong as it can be, a remarkable fact
that shows the dynamics of this system cannot be approxi-
mated by a Newtonian dynamics plus post-Newtonian
corrections, as in the case of models where matter is
confined to a bounded region.
The plan of the paper is as follows. After setting up the

problem in Sec. II, we show in Sec. III that there exists a
family of solutions where the space time inside the shell is
flat and the equation of motion of the shell decouples
completely from the gravitational modes. The motion of
the shell is governed by an equation of the same form as
that of a particle in a time-independent, one-dimensional
potential. We find that under appropriate initial conditions
one can have collapsing, bounded periodic, or unbounded
motions. Next, in Sec. V we analyze the linearized
equations that describe the dynamics of the system near a
stable static solutions, keeping a regular interior. The*gleiser@fis.uncor.edu

PHYSICAL REVIEW D 85, 044026 (2012)

1550-7998=2012=85(4)=044026(12) 044026-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.044026


surprising result here is that the motion of the shell is
completely determined by the configuration of the radia-
tive modes of the gravitational field. In particular, there are
oscillating solutions for any chosen period, in contrast with
the ‘‘approximately Newtonian plus small radiative cor-
rections’’ motion expectation. Another interesting modes
that appear here are the ‘‘antiresonances’’ discussed in
Sec. VI. In Sec. VII we consider the general behavior of
the periodic solutions, and in Sec. VIII their relation to the
initial value problem for the linearized dynamics of the
shell. We comment on the physical meaning of these
results and provide some explicit examples. We also con-
sider the role of the MSRF initial data of [1], in this
context, in view of a possible conflict of our analysis
with some recent results by Nakao, Ida, and Kurita [3],
showing that the conflict is solved once one realizes that
the evolution of MSRF initial data cannot be analyzed
perturbatively. Some closing comments are contained in
Sec. IX.

II. EQUATIONS OF MOTION

We consider a spacetime M ¼ M� [� [Mþ (M� and
Mþ are manifolds with boundary where the boundaries are
identified with the 3-manifold �) with cylindrical symme-
try where� is the history of a hollow cylinder composed of
counterrotating particles of rest mass equal to unity;
M�ðMþÞ is the vacuum interior (exterior) region of the
cylinder. In the vacuum interior ðM�Þ and exterior ðMþÞ of
the shell, we introduce canonical cylindrical coordinates
ðt; r; z; �Þ. The metric takes the form [1].

ds2� ¼ e2���2c�ðdr2 � dt2�Þ þ e2c�dz2 þ e�2c�r2d�2

(1)

Dropping the � indices, the Einstein field equations in the
empty space inside and outside the shell are

c ;rr þ 1

r
c ;r � c ;tt ¼ 0 (2)

�;t ¼ 2rc ;rc ;t; �;r ¼ r½ðc ;rÞ2 þ ðc ;tÞ2�: (3)

We may interpret c ðr; tÞ as playing the role of a gravita-
tional field whose static part is the analogue of the
Newtonian potential. The time-dependent solutions of (2)
represent gravitational waves [10]. Equation (2) is the
integrability condition of Eqs. (3). The coordinates
ðz;�; rÞ and the metric function c are continuous across
the shell �, while t and the metric function � are discon-
tinuous. Smoothness of the spacetime geometry on the axis
r ¼ 0 requires that � ¼ 0 and c be finite at r ¼ 0. The
junction conditions of M� and Mþ through � require the
continuity of the metric and specify the jump of the ex-
trinsic curvature K� compatible with the stress energy
tensor on the shell. The induced metric on � is given by

ds2� ¼ �d�2 þ e2c �dz2 þ e�2c �R2d�2: (4)

Here c �ð�Þ ¼ cþðRð�Þ; tþð�ÞÞ ¼ c�ðRð�Þ; t�ð�ÞÞ.
The evolution of the shell is characterized by Rð�Þ, which
is the radial coordinate r at the shell’s location and � the
proper time of an observer at rest on �. If we assume, as in
[1,9], that the shells is made up of equal mass counter-
rotating particles, the Einstein field equations on the shell
may be put in the form

cþ
;n � c�

;n ¼ � 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ e2c �J2

p (5)

Xþ � X� ¼ � 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ e2c �J2

p

R
; (6)

where the constants � and J are, respectively, the proper
mass per unit Killing length of the cylinder and the angular
momentum per unit mass of the particles. The other quan-
tities in (5) and (6) are given by

X� � @t�
@�

¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2ð���c �Þ þ _R2

p
(7)

c�
;n ¼ c�

;r X
� þ c�

;t
_R; (8)

where a dot indicates a � derivative, and we also have

d2R

d�2
¼ _R _c � � R½ð _c �Þ2 þ ðc�

;nÞ2� þ R2c�
;nX

�

R2 þ e2c �J2

� �R2X�

ðR2 þ e2c �J2Þ3=2 þ
J2e2c �X�Xþ

RðR2 þ e2c �J2Þ : (9)

Eqs. (5), (6), and (9), together with (2) and (3) determine
the evolution of the shell and of the gravitational field to
which it is coupled. The relevant functions: Rð�Þ,
c�ðr; t�Þ, and ��ðr; t�Þ appear satisfying a rather com-
plex set of coupled ordinary and partial differential equa-
tions, with the boundary values for c� and �� at
t ¼ t�ð�Þ; r ¼ Rð�Þ directly coupled to the motion of the
shell. Because of this complexity, the system was first
analyzed in [1] only to show some properties of the motion,
although no solution was obtained, and later in [9], where,
after introducing a second shell, mainly for technical rea-
sons, an approximation that leads to an effective decou-
pling of (9) was used, to avoid considering the complex
boundary problem that results for the wave Eqs. (2) for
c�. Some full solutions of the problem are considered in
the following sections.

III. A RESTRICTED SET OF SOLUTIONS

A full solution of the problem should provide the evo-
lution of arbitrary initial data, satisfying the constraints
imposed by the field equations. This is, clearly, a very
complex problem. There is, however, a restriction on the
set of solutions that while retaining its most interesting
feature, namely, the coupling of the shell with radiative
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modes of the gravitational field, still simplifies consider-
ably the system, allowing for a complete analysis of the
resulting evolution and of its physical meaning.

A. Static solutions

We will first consider the static solutions for a shell
of constant radius R, assuming an empty flat interior
[1,9]. In this case we may take �� ¼ 0, c� ¼ 0, implying
c � ¼ 0, and for the exterior field we have

cþðrÞ ¼ �� lnðr=RÞ; �þðrÞ ¼ �0 þ �2 lnðr=RÞ
(10)

then

XþðrÞ ¼ e��0 ; X� ¼ 1: (11)

Since _R ¼ 0, _c � ¼ 0, and c�
;n ¼ 0, we find

� ¼ 2
J2

R2
; �0 ¼ 2 ln½ðR2 þ 2J2Þ=R2� (12)

and

� ¼ J2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ R2

p

ð2J2 þ R2Þ2 : (13)

This means that for any static solution we must have � �
0:15879 � � � ; (see [9]).

B. Nonstatic solutions with a flat interior

The previous results indicate that, at least for the static
case, we have solutions where the interior region of the
shell is empty and flat. We notice that for a similar prob-
lem, namely, a shell of counterrotating particles, but with
spherical symmetry, we may have nonstatic solutions
where the radius of the shell changes in time, but the
interior remains flat. In this case the spherical symmetry
is crucial, as this implies that there are no radiative modes
for the gravitational field. This is not the case for cylindri-
cal symmetry, and, in general, one does not expect that in
the nonstatic case the interior will remain flat, because
radiative gravitational modes, corresponding to a nonstatic
c , will in general penetrate the interior region for, other-
wise, the matching conditions would not be satisfied.
Nevertheless, given the existence of the static solution
with an empty flat interior, it is worthwhile to explore to
what extent, if any, this condition can be generalized to a
nonstatic solution. We, therefore, assume again �� ¼ 0,

c� ¼ 0, (implying c � ¼ 0, c�
;n ¼ 0, and X� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð _RÞ2p
), but place no restriction on either Rð�Þ or

cþ, and �þ. The field equations are now (2) and (3),
and on the shell we have

Xþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð _RÞ2

q
� 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ J2
p : (14)

Using this, and the fact that _c � ¼ 0, we find

d2R

d�2
¼ ð1þ ð _RÞ2ÞJ2

RðR2 þ J2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð _RÞ2p ðR2 þ 2J2Þ2�

R2ðR2 þ J2Þ3=2 : (15)

The first surprising thing about this equation is that it
contains no information on c , and, therefore, it is an
autonomous equation, completely decoupled from the
gravitational mode. Equally unexpected is that it admits a
simple first integral, given by

C ¼ ��

2
lnðR2 þ J2Þ þ 2

�J2

R2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR

d�

�
2 þ 1

s
;

(16)

where C is a constant. This may also be written in the form�
dR

d�

�
2 þ 1� ½4�J2 � �R2 lnðR2 þ J2Þ � 2CR2�2

4R2ðR2 þ J2Þ ¼ 0;

(17)

and, therefore, the motion of the shell is identical to that of
a particle of unit mass in the potential,

VðRÞ ¼ 1

2

�
1� ½4�J2 � �R2 lnðR2 þ J2Þ � 2CR2�2

4R2ðR2 þ J2Þ
�
(18)

with vanishing total energy. Notice that C is not this energy
and, therefore, the form of VðRÞ will be different for differ-
ent solutions. Nevertheless, (17) implies that if there are
suitable choices of the parameters for which the potential
VðrÞ has a negative minimum, the shell may execute a
periodic motion. Let us first find the conditions under
which this may happen. We look for equilibrium points
(static solutions) where _R ¼ 0, and €R ¼ 0. Let R ¼ R0 be
that point, then, from (15), we have

� ¼ J2R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ J2

q
ðR2

0 þ 2J2Þ2 ; (19)

which may also be considered as an equation for R0, given
� and J.
To check for stable equilibrium points we set Rð�Þ ¼

R0 þ �ð�Þ, replace in (15), and expand to first order in
�ð�Þ. We find

d2�

d�2
¼ � ½2R4

0 � ðR2
0 þ 2J2ÞJ2�J2

R2
0ðR2

0 þ J2Þ2ðR2
0 þ 2J2Þ�: (20)

Then, the static solution will be stable for R2
0=J

2>

ð1þ ffiffiffiffiffiffi
17

p Þ=4, (R0=J > 1:1317 � � � ) and unstable otherwise
(see also [9]).
The somewhat complex form and dependence on its

parameters of VðRÞ makes a general analysis of the pos-
sible motions based on (17) rather difficult. We notice,
however, that we have

VðRÞ ¼ �ð� lnðRÞ þ CÞ2=2þOðR0Þ; R ! 1 (21)
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and

VðRÞ ¼ �2�2R�2 þOðR0Þ; R ! 0 (22)

and therefore we have unbounded motions for sufficiently
large R and collapsing motions for sufficiently small R.
Moreover, the equation

4�J2 � �R2 lnðR2 þ J2Þ � 2CR2 ¼ 0 (23)

has a real root with R ¼ Rm > 0 for any real J and C, and
� > 0. But for R ¼ Rm we have VðRÞ ¼ 1=2, which is also
the maximum possible value of VðRÞ, and, therefore, the
collapsing and unbounded motion regions are separated at
least by a ‘‘forbidden’’ gap. Depending on the values of the
parameters, VðrÞ may contain two forbidden gaps, where
VðrÞ> 0, and periodic motions are possible in the region
between these gaps. Figure 1 provides some explicit ex-
amples of these cases. They will be explored in more detail
in the next sections.

To close this subsection we remark also that the evolu-
tion Eq. (15) has the following scaling property: if we
introduce the function ~Rð�Þ, such that

~Rð�Þ � 1

J
RðJ�Þ (24)

we have

d2 ~R

d�2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd ~Rd�Þ2 þ 1

q
ð ~R2 þ 2Þ2�

ð ~R2 þ 1Þ3=2 ~R2
� ðd ~Rd�Þ2 þ 1

~Rð ~R2 þ 1Þ ¼ 0 (25)

and, therefore, all the types of motions, up to scalings, are
determined by the (adimensional) parameter �.

C. Compatibility with the field equations

So far we have only considered Eq. (15). The full set of
field equations includes also c , � and the junction con-

ditions, and there is, a priori, no guarantee that the only
solutions of (15) compatible with these are the static ones.
In particular, the condition c � ¼ 0 implies

cþ
;r ðRð�Þ; tþð�ÞÞ _Rþ cþ

;t ðRð�Þ; tþð�ÞÞXþ ¼ 0; (26)

which, together with (8) and (14), determines
cþ

;r ðRð�Þ; tþð�ÞÞ and cþ
;t ðRð�Þ; tþð�ÞÞ in terms of Rð�Þ.

After some simplifications, and using (17), we find

cþ
;r ðRð�Þ; tþð�ÞÞ ¼ � �½4�J2 þ 8�R2 þ �R2 lnðR2 þ J2Þ þ 2CR2�

RðR2 þ J2Þ½1þ 4�2 lnðR2 þ J2Þ þ 8�Cþ 16�2�

cþ
;t ðRð�Þ; tþð�ÞÞ ¼ 2� _Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ J2
p

½1þ 4�2 lnðR2 þ J2Þ þ 8�Cþ 16�2� :
(27)

Similarly, from (14), we have

�þðRð�Þ; tþð�ÞÞ ¼ � 1

2
ln½1þ 4�2 lnðR2 þ J2Þ

þ 8�Cþ 16�2�: (28)

From this equation we may compute

d�þ

d�
¼ �þ

;r
_Rþ �þ

;t X
þ (29)

and we can check that if we replace (3) on the right, and
then use (27), we get the same expression as that obtained

by computing the left-hand side of (29) using (28). We
conclude that the restriction to a flat interior is compatible
with the dynamics of � on the shell, even in the nonsta-
tionary case.
Now we could compute in principle c (and then �)

outside the shell. We notice that, provided Rð�Þ satisfies
some suitable conditions, to be considered below, if we
only imposed c � ¼ 0, since Rð�Þ is given, then we would
get for c a wave equation with a well-defined boundary
condition. But since both c ;r and c ;t are given in the

boundary, it is not clear that in this case we may get any
nontrivial solution. To analyze this problem we notice that

–0.4

–0.2

0

0.2

0.4

V(r)
5 10 15 20

ln (r)

FIG. 1. Plots of VðrÞ as a function of lnðrÞ. We have taken
J ¼ 1, and � ¼ 0:1 in all cases. The solid curve, for C ¼ �1:3,
contains a region where periodic motions are possible. This
region is absent for both the dotted (C ¼ �1:1), and the dashed
(C ¼ �1:5) curves. In all cases we have a collapsing region, for
sufficiently small r, and an unbounded region, for sufficiently
large r.
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in (2) we may consider r as the ‘‘time’’ variable, and t
as the ‘‘space’’ variable [11], as shown in Fig. 2. Then, the
problem can be posed as that of finding the evolution
(in r) of c , for initial data (c � ¼ 0; c ;r) on the

(one-dimensional) surface S

t ¼ �; r ¼ Rð�ð�ÞÞ; (30)

where � is a parameter, and �ðtÞ is obtained by inverting
(14). The problem is well-posed provided that S is a
Cauchy surface, and this requires that the tangent vector
to S be ‘‘space like,’’ that is, ðdt=d�Þ2 � ðdr=d�Þ2 > 0, or

ðXþÞ2 > ð _RÞ2: (31)

But, from (7), this is always satisfied. We might, therefore,
conclude that the field equations have solutions for any
Rð�Þ that is a solution of (15). However, we must also
require that the data c ;rðRð�ÞÞ be nonsingular, but, as can
be seen from (27), this may not always be the case, because
the factor ½1þ 4�2 lnðR2 þ J2Þ þ 8�Cþ 16�2� in the de-
nominator in (27) may vanish for some finite R � 0. We
notice here that solving (23) for lnðR2

m þ J2Þ we get
1þ 4�2 lnðR2

m þ J2Þ þ 8�Cþ 16�2

¼ 1þ 16
ðRm

2 þ J2Þ�2

R2
m

: (32)

Since the left-hand side is a monotonically increasing
function of R, this implies that the denominator is always
positive for R> Rm, and, therefore, this problem does not
arise for the unbounded solutions of the previous
subsection.

We notice that periodic motions are only possible if the
potential has, besides that for R ¼ Rm with VðRmÞ ¼ 1=2,
another maximum for say R ¼ Rp, with VðRpÞ> 0. For

this maximum we would have

dV

dR

��������R¼Rp

¼ � F1F2

4R3ðR2 þ J2Þ2
��������R¼Rp

¼ 0; (33)

where

F1 ¼ �R2 lnðR2 þ J2Þ þ 2CR2 � 4�J2 (34)

and

F2 ¼ R2� lnðR2 þ J2ÞJ2 þ 2�ð2J4 þ R4Þ
þ 2R2J2ðCþ 4�Þ: (35)

The first factor in (33), F1, vanishes for R ¼ Rm. We can
check that this is its only zero for R> 0 by noticing that

dF1

dR

��������R¼Rm

¼ 2
�ðRm

2 þ 2J2Þ2
RmðRm

2 þ J2Þ > 0 (36)

and, therefore, the equation F1 ¼ 0 can have only one root
for R> 0. Then, any extremum of VðRÞ other than that for
R ¼ Rm must come from the vanishing of the second
factor, F2. It can be shown that F2 can have zero, one or
two roots depending on the parameters and that each root
Rp must satisfy Rp < Rm. If F2 has no root or only one,

VðrÞ has only one maximum (at Rm, the root of F2 being a
saddle point) and there are no periodic motions. If F2 has
two roots, VðrÞ has two maxima and a minimum between
them (a maximum and a minimum at the roots of F2 and
another maximum at Rm). In this case we can have periodic
motions only if V > 0 at the first maximum and V < 0 at
the minimum, and this depends nontrivially on the choice
of parameters. We can, nevertheless, obtain a useful result
as follows. At a root Rp of F2 we have

lnðR2
p þ J2Þ ¼ �2

2J4 þ Rp
4 þ 4Rp

2J2

Rp
2J2

� 2
C

�
(37)

and, therefore, we may write

VðRpÞ ¼ 1

2

�
1� �2ðR2

p þ 2J2Þ4
J4R2

pðR2
p þ J2Þ

�
: (38)

Then, if VðRpÞ is a positive maximum we must have

�2 ¼ �J4Rp
2ðRp

2 þ J2Þ
ðRp

2 þ 2J2Þ4 (39)

with 0 � �< 1. Replacing in the problematic factor in the
denominator of (27) we have

1þ 4�2 lnðRp
2 þ J2Þ þ 8C�þ 16�2

¼ 1� 8
J2ðRp

2 þ J2ÞðRp
4 þ 2Rp

2J2 þ 2J4Þ�
ðRp

2 þ 2J2Þ4 : (40)

The right-hand side of (40) is a linear function of �. It is
equal to 1 for � ¼ 0 and to Rp

8=ðRp
2 þ J2Þ4 for � ¼ 1.

Since the left-hand side of (40) is a monotonic function of
R, it is positive at any positive maximum of VðRÞ and the
oscillating solutions always take place at R> Rp (after the

0

2

4

6

8

10

12

r

62 4 8 10 12
t

FIG. 2. Evolving cþðt; rÞ from ‘‘initial data’’ ðc ¼ 0; c ;rÞ on
the curve ðr ¼ Rð�Þ; t ¼ tþð�ÞÞ, represented by the thick curve in
the Figure. cþðt; rÞ is evolved into the region above this curve.
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first positive maximum), we conclude that (27) is well-
defined and finite for any periodic motion.

As indicated, there are also collapsing solutions with a
flat interior. In this case we find that cþ

;r ðRð�Þ; tþð�ÞÞ is
singular either at some finite R or at R ¼ 0. It can be
checked that these singularities occur for finite � and t�.
Since the solutions are symmetric in �, this implies that the
evolution has singularities both at some finite time in the
past and in the future, and, therefore, by causality they
extend only to some bounded region in r. We do not
analyze further these solutions as they do not seem to be
physically interesting.

In the following sections we consider linearized solu-
tions corresponding to infinitesimally small departures
from the static stable solutions, both for flat and for empty
regular interiors.

IV. LINEARIZED PERIODIC SOLUTIONS
WITH A FLAT INTERIOR

Let us assume that R ¼ R0 corresponds, for some suit-
able J, to a stable static solution with � given by (19). For
this solution we have c� ¼ 0, c � ¼ 0, and �� ¼ 0, with
cþ and �þ given by (10) and (12). We consider now a
perturbation of the static solution such that the interior
remains flat. This means that we keep c� ¼ 0, c � ¼ 0,
and �� ¼ 0, but for the other dynamic variables we in-
troduce now a time dependence by setting

Rð�Þ ¼ R0 þ �ð�Þ
cþðr; tþÞ ¼ �� lnðr=R0Þ þ �c ðr; tþÞ
�þðr; tþÞ ¼ �0 þ �2 lnðr=R0Þ þ ��ðr; tþÞ

(41)

with � and �0 given by (12) with R ¼ R0, and consider the
linearized field equations that result from expanding to first
order in �, �c and ��. To this order � satisfies (20). If we
define

�2
0 ¼

½2R4
0 � ðR2

0 þ 2J2ÞJ2�J2
R2
0ðR2

0 þ J2Þ2ðR2
0 þ 2J2Þ (42)

the solution of (20) can be written as

�ð�Þ ¼ �0e
i�0�: (43)

In accordance with (7) and (14), and expanding to first
order in �0, we have

dtþ
d�

¼ R4
0

ðR2
0 þ 2J2Þ2 þ

4J4�0e
i�0�

ðR2
0 þ 2J2Þ2R0

: (44)

Actually, the last term on the right in (44) contributes in all
relevant equations only to second order, and, therefore, we
may set

tþ ¼ R4
0

ðR2
0 þ 2J2Þ2 � (45)

when appropriate. Similarly, we may set t� ¼ �. We also
define, for convenience,

�2 ¼ ðR2
0 þ 2J2Þ2
R4
0

�0: (46)

We look now for solutions of c and � with the same
periodicity as Rð�Þ. On account of (2) and (45) the general
solution for c will be then of the form

cþðtþ; rÞ ¼ � 2J2

R2
0

ln

�
r

R0

�
þ ðA2J0ð�2rÞ þ B2Y0ð�2rÞÞei�2tþ ; (47)

where A2 and B2 are constants, and J0, and Y0 are Bessel
functions. Then the junction conditions on the shell, and
the condition c � ¼ 0 are satisfied (to first order in �0) if

A2 ¼ ��J2
�
J2ð4J2R2

0 þ 4J4 � R4
0Þ

ðR2
0 þ J2ÞR7

0

Y0ð�2R0Þ

þ�0ðR2
0 þ 2J2Þ2
R6
0

Y1ð�2R0Þ
�
�0

B2 ¼ �J2
�
J2ð4J2R2

0 þ 4J4 � R4
0Þ

ðR2
0 þ J2ÞR7

0

J0ð�2R0Þ

þ�0ðR2
0 þ 2J2Þ2
R6
0

J1ð�2R0Þ
�
�0:

(48)

Similarly, again to first order in �0, we find

�þðtþ; rÞ ¼ �0 þ 4J4

R4
0

ln

�
r

R0

�
� 4J2

R2
0

ðA2J0ð�2rÞ

þ B2Y0ð�2rÞÞei�2tþ ; (49)

where

�0 ¼ ln

�ðR2
0 þ 2J2Þ2
R4
0

�
: (50)

Summarizing, we see that given appropriate values of
R0 and J, we can find a complete solution, at the linearized
level, where both the motion of the shell and the radiative
modes of the fields are periodic in their respective
times. For this type of solution the period is a definite
function of R0 and J, in correspondence with the idea of
a ‘‘perturbation’’ of a stable equilibrium static configura-
tion, characterized by R0 and J, with the departure from
equilibrium being given by the arbitrarily small parameter
�0. Finally we remark that in the limit J2 � R2

0 we have

�2
0 ’

2J2

R4
0

; (51)

that is, �0 approaches the value corresponding to small
oscillations of the shell in the Newtonian limit. At
first sight it would appear that this should be the natural
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frequency of oscillation of the shell, and that the effect of
the coupling to the gravitational radiation modes should
introduce only a small departure, such as damping, from
the Newtonian case. However, as we shall show in the next
section, this is only a special case resulting from the
assumption of a flat interior, and the behavior of the system
is in general quite different from this expectation.

V. LINEARIZED PERIODIC SOLUTIONS
WITH A REGULAR INTERIOR

We consider now the more general situation where the
interior region is empty but may contain gravitational
radiation, imposing only the condition of regularity on
the symmetry axis r ¼ 0. We then set

c�ðt�; rÞ ¼ A1J0ð��rÞei��t� : (52)

Restricting again to linearized order we may set

��ðt�; rÞ ¼ 0 (53)

and, therefore, also to the appropriate order, we may also
set

t�ð�Þ ¼ �: (54)

We assume again a perturbation around a stable equilib-
rium configuration characterized by R0 and J. We therefore
take

Rð�Þ ¼ R0 þ �0e
i�� (55)

and

cþðtþ; rÞ ¼ � 2J2

R2
0

ln

�
r

R0

�
þ ðA2J0ð�2rÞ

þ B2Y0ð�2rÞÞei�2tþ ; (56)

where A2 and B2 are constants, considered to be of first
order. To this order we then have

�þðtþ; rÞ ¼ �0 þ 4J4

R4
0

ln

�
r

R0

�
� 4J2

R2
0

ðA2J0ð�2rÞ

þ B2Y0ð�2rÞÞei�2tþ ; (57)

where �0 is given by (50). A long calculation then shows
that consistency at first order of the equations requires
�� ¼ �,

�2 ¼ ðR2
0 þ 2J2Þ2
R4
0

� ¼ e�0� (58)

and

tþ ¼ R4
0

ðR2
0 þ 2J2Þ2 � ¼ e��0�: (59)

Replacing now in (5), (6), and (9), and expanding to first
order, we find a set of three linear independent equations
for A1, A2, B2, and �0. It turns out that a convenient way of
handling this system is to introduce a new parameter 	 by
the definition

A1¼R2
0ðR2

0þ2J2ÞðR2
0þJ2Þ2�2þJ2ð2J4�2R4

0þR2
0J

2Þ
�2R2

0þ1
	

¼R2
0ðR2

0þ2J2ÞðR2
0þJ2Þ2ð�2��2

0Þ
�2R2

0þ1
	; (60)

where �2
0 is given by (42). We then have

�0 ¼ ðR0ðR2
0 þ 2J2ÞðR2

0 þ J2Þ�J1ð�R0Þ � J2ð2J2 þ 3R2
0ÞJ0ð�R0ÞÞR3

0

�2R2
0 þ 1

	 (61)

and

A2 ¼ �½½�ðR0
2 þ 2J2Þ2ðR0

2ðR2
0 þ J2Þ2�2 � J2ðJ2 þ 2R2

0ÞÞY1ð�2R0Þ þ 2J2Y0ð�2R0ÞR0ðR2
0 þ J2Þ

� ðð4J4 þ 6R2
0J

2 þ R4
0Þ�2 � 2J2Þ�J0ð�R0Þ � ½Y0ð�2R0ÞððR2

0 þ 2J2Þ2ðR2
0ðR2

0 þ J2Þ2�2 � J4Þ � 2J2R6
0Þ

� 2J2R0�ðR2
0 þ J2ÞðR2

0 þ 2J2Þ2Y1ð�2R0Þ��J1ð�R0Þ� �ðR
2
0 þ 2J2Þ	

2R3
0ðR2

0�
2 þ 1Þ (62)

B2 ¼ �½ð�2J2Y0ð�2R0ÞR0ðR0
2 þ J2Þðð4J4 þ 6R0

2J2 þ R0
4Þ�2 � 2J2Þ ��ðR0

2 þ 2J2Þ2ðR0
2ðR0

2 þ J2Þ2�2

� J2ðJ2 þ 2R0
2ÞÞY1ð�2R0ÞÞJ0ð�R0Þ þ J1ð�R0Þ�ðY0ð�2R0ÞððR0

2 þ 2J2Þ2ðR0
2ðR0

2 þ J2Þ2�2 � J4Þ

� 2J2R0
6Þ � 2J2R0�ðR0

2 þ J2ÞðR0
2 þ 2J2Þ2Y1ð�2R0ÞÞ� �ðR0

2 þ 2J2Þ	
2ðR0

2�2 þ 1ÞR0
3
: (63)
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The main reason for displaying these, at first sight, not
very illuminating expressions for A1, �0, A2 and B2 is that
they explicitly show that given R0 and J corresponding to
some stable equilibrium configuration, i.e., to some real
value for �0, we have nontrivial periodic solutions for the
linearized perturbations for every value of �. Thus, we
reach the unexpected result that, at least perturbatively,
we cannot ascribe a particular period to motions close to
the stationary solution, as happens in the corresponding
Newtonian dynamics. The period of the motion can be
arbitrary, depending entirely on the field configuration.
From a more physical point of view, this can be interpreted
by noticing that as the radius of the shell changes, the
change in the static part of the field [the lnðrÞ terms] is of
the same order of magnitude as the radiating part of the
field that this motion generates. Thus, as the shell moves
away from its stationary configuration, the motion is driven
to essentially similar extents by the static and the dynamic
parts of the gravitational field. In some sense then, the
coupling of the shell to the gravitational radiation modes
is as strong as it can be, a remarkable fact that shows that
the dynamics of this system cannot be approximated by a
Newtonian dynamics plus post-Newtonian corrections, as
in the case of some more realistic models, where matter is
confined to a bounded region.

We have already analyzed the special case where the
field inside the shell vanishes, and found that this is pos-
sible only for a particular value of�, which, in the context
of this more general analysis, corresponds to the particular
solution where A1 ¼ 0. In fact it is straightforward to show
that the solution for � ¼ �0 reduces precisely to that of
the previous section. But there is also, for instance, a
particular set of solutions that display a different type of
unexpected behavior. We may call these antiresonances.
They are described in the next section.

VI. ANTI-RESONANCES

As the shell evolves in time, its physical radius is given
by R0ð�Þ expð�c �ð�ÞÞ. For perturbations around an equi-
librium point, to linear order we then have

R0ð�Þe�c �ð�Þ ¼ R0 þ ð�0 � A1R0J0ð�R0ÞÞei��: (64)

If we use now (60) and (61), we get

�0 � A1R0J0ð�R0Þ
¼ ½R0

3�J1ð�R0Þ � ðJ2 þ R0
2�2ðR0

2 þ J2ÞÞJ0ð�R0Þ�

� R0ðR0
2 þ 2J2ÞðR0

2 þ J2Þ	
R0

2�2 þ 1
: (65)

This implies that the physical radius of the shell remains
constant (to first order), and hence we have an antireso-
nance, if � is a solution of the equation,

R0
3�J1ð�R0Þ � ðJ2 þ R0

2�2ðR0
2 þ J2ÞÞJ0ð�R0Þ ¼ 0:

(66)

It is easy to check that (66) has an infinite sequence of
solutions. Again it is remarkable that for these frequencies
the effects of the inner an outer radiation modes exactly
compensate each other and the shell remains essentially
motionless.

VII. THE GENERAL BEHAVIOR OF THE
PERIODIC SOLUTIONS

The linearized solutions found in the previous sections
have in common the desirable feature that they contain a
parameter that can be made arbitrarily small, and thus they
approach arbitrarily closely the static solution. At least this
is true for finite values of r. In fact, looking at the form of
(47) and (49) we see that for large r the solution appears to
be dominated by the static lnðrÞ terms, and, therefore, that
the solutions approach the static unperturbed background
for large r. A more accurate geometrical picture can be
obtained by considering, e. g., the Kretschmann invariant
K, for large r. Using the forms (47) and (49) we find

K ¼ � 16�ð1þ �Þð1þ 2�Þ
e�0R�4�ð1þ�Þ

0 r4þ4�ð1þ�Þ cosð�1tþÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�3

1r
3

�

s �
A1 sin

�
�1rþ �

4

�

� A2 cos

�
�1rþ �

4

��
þO

�
r1=2

r4þ4�ð1þ�Þ

�
(67)

while for the background static metric we have

K ¼ 16�2ð1þ �þ �2Þð1þ �Þ2
e4�0R�4�ð1þ�Þ

0 r4þ4�ð1þ�Þ : (68)

Thus, although in both cases K ! 0 for large r, in the

perturbed case K is a factor of order r3=2 larger than in the
static case, so this appears to indicate a larger and larger
departure between the perturbed and unperturbed solutions
as r ! 1. The consequences and meaning of this depar-
ture are not clear. For instance, in the flat interior case,
where we have the same behavior for K, we have shown
that there are nonperturbative periodic solutions, and the
linearized solutions should approach those, and therefore,
at least in that sense, the behavior (67) would be compat-
ible with a perturbative treatment. This, however, is not
entirely correct. The reason is that if we attempt to solve
the field equations for cþ and �þ to second order in the
periodic terms, �þ acquires terms of order r (rather than
order r0 as in the first order terms), and, if these are
included in K the difference between the solutions is now
of order r3.
There is nevertheless, another way to look at these

solutions. As indicated, they are indeed close to the static
solution provided r is not too large. We notice that the
equations for cþ and �þ are local and causal. In particular,
@�þ=@tþ vanishes if @cþ=@tþ ¼ 0. We may, therefore,
consider the solution up to some large value of r, say
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rb 	 R0, cut off the periodic part for r > rb, and use this
configuration as initial data for the system. On account of
causality, the shell will then oscillate periodically for a
time of the order of rb, while preserving the asymptotic
structure of the static solution, so that, in principle, we
could have solutions that are periodic for a time that is long
as compared with the oscillation period.

There is still another way to look at the linearized
solutions that is explored in the next section.

VIII. THE INITIAL VALUE PROBLEM

An important problem related to the system under dis-
cussion is the following. Suppose we have initial data that
differ slightly from those corresponding to the static solu-
tion. We then expect that the evolution of those data will
remain close to a static solution and that, therefore, a
linearized treatment should be adequate. We notice at
this point that a linear superposition of linearized periodic
solutions will also be a linearized solution, although no
longer periodic. In fact, we may generalize this idea and
write

cþðtþ; rÞ ¼ �� lnðr=R0Þ þ
Z 1

0
½a2ð�þÞJ0ð�þrÞ

þ b2ð�þÞY0ð�þrÞ�ei�þtþd�þ

�þðtþ; rÞ ¼ �0 þ �2 lnðr=R0Þ � 2�
Z 1

0
½a2ð�þÞJ0ð�þrÞ

þ b2ð�þÞY0ð�þrÞ�ei�þtþd�þ

c�ðt�; rÞ ¼
Z 1

0
a1ð��ÞJ0ð��rÞei��t�d��

�� ¼ 0

Rð�Þ ¼ R0 þ
Z 1

0
�ð�Þei��d�; (69)

where the coefficients a1, a2, b2, and � are complex
functions of their arguments, and, as usual, it is understood
that we take the real part of the right-hand side of (69).
Since each value of� is independent of the others, we may
use the results of the previous section to solve for a2, b2, �
and a1 in terms of a different 	, for each �, and it is clear
that we may choose 	 to be an arbitrary complex function
�. In particular, considering the asymptotic behavior for
large r of the Bessel functions J0 and Y0, we see that with
an appropriate falloff for 	ð�Þ as � ! 1 we may control
the corresponding fall-off for large r of cþ and �þ,
because the dependence on � of both a2 and b2 is related
by linearity to that of 	. Since the expressions for cþ and
�þ have the form of Fourier-Bessel transforms, in this case
the radiative parts should also fall off for large jtj, and these
expressions might represent a situation where for large
negative t the shell is stationary, being subsequently per-
turbed by an incoming gravitational radiation pulse, which
eventually rebounds, leaving the shell again in the original
stationary state, because, from the assumed properties of

	ð�Þ and its relation to �ð�Þ, and the properties of the
Fourier transform, the second term in the right-hand side of
the expression forRð�Þ in (69) goes to zero for large jtj, and
therefore, Rð�Þ approaches R0 for large jtj.
Although the above reasoning is correct, it is not clear

how we can use it to solve the initial value problem for our
system. To begin with, assuming that, e.g., cþð0; rÞ is
given, since the range of r is not 0 � r <1, and we cannot
impose a priori boundary conditions for r ¼ R0, there
appears to be no well-defined procedure for inverting
(69) and computing, say, a2 and b2. Nevertheless, since
	, and therefore, a2 and b2, are complex, we actually have
two arbitrary real functions of �þ at our disposal for the
construction of cþð0; rÞ, and, therefore, make the system
satisfy arbitrary initial data. We notice, however, that once
	ð�Þ is given, not only a2 and b2 are fixed, but also a1, and
therefore, the data inside the shell, which should, from
causality, be independent of that outside the shell. The
answer to this conundrum is that the expression for
cþð0; rÞ on the right in (69) is overcomplete, because we
only require cþð0; rÞ in the range R0 � r <1, and that
leaves the range 0< r < R0 arbitrary. Since the expression
in (69) actually defines cþð0; rÞ also in the region 0< r <
R0, there must be an infinite set of functions a2 and b2 that
reproduce the data in R0 � r <1, so in principle there is
room for arbitrary data c�ð0; rÞ in 0< r < R0. Again,
although this seems plausible, we do not have a proof of
its validity. The difficulty here is the lack of a self-adjoint
formulation for the initial value formulation of the moving
boundary problem posed by the dynamics of our system.
This problem will be considered in detail elsewhere [12].
To illustrate the points considered in this section, we

include as an example, the case of an incoming pulse, its
interaction with the shell, and eventual rebound after this
interaction. In this example we set R0 ¼ 4, J ¼ 1, which
implies � ¼ 0:0509 . . . , and�0 ¼ 0:0770 � � � . We also set

	ð�Þ ¼ 2
R0

3ð�2R0
2 þ 1ÞQe�4ð��2Þ2

ðR0
2 þ 2J2Þ� (70)

with Q ¼ 10�5. Replacing in (69) we obtain explicit ex-
pressions for the dynamic variables of the problem, from
which we can view the evolution of the system. Details are
given in Figs. 3–5. In Fig. 3 we have a plot of Rð�Þ � R0 as
a function of �, showing the incoming pulse region, for
� < 0, and the outgoing pulse region for � > 0. The shell is
essentially in its equilibrium radius R0 for either � � �10
and � 	 10. Figure 4 is a plot of c�ðt; rÞ in the region 0 �
r � R0 ¼ 4, �10 � t � 10. We notice the propagation of
the incoming pulse, an intermediate interference zone,
formed by incoming and outgoing waves, and the eventual
falloff of the pulse as it propagates outside. In Fig. 5 we
have a plot of cþðt; rÞ in the region R0 ¼ 4 � r � 15,
�10 � t � 10. We can see the propagation of the incom-
ing pulse towards the shell, a zone near t ¼ 0 where most
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of the pulse has gone through the shell, and its rebound and
propagation away from the shell, for t > 0.

In closing this section we may ask what is the relation of
this construction, and its implied initial data, to the
‘‘momentarily static and radiation free’’ initial data of
[1]. In fact it has been shown [3], using a different analysis
based on the concept of C-energy, that the evolution of
MSRF initial data should lead, in general, to unbounded
motions even starting close to the static configuration. This
appears, at first sight, to contradict our results that imply
that the static configuration is stable under small perturba-
tions. To understand the relation between these results

we consider again the general equations of motion for a
particular shell, characterized by the constants of the mo-
tion � and J. Without loss of generality we may choose �,
t�, and tþ such that � ¼ 0 corresponds to tþ ¼ t� ¼ 0.
Then, the ‘‘momentarily static and radiation free’’ initial
data [1] on the surfaces tþ ¼ t� ¼ � ¼ 0, is given by

Rð�Þj�¼0 ¼ R1;

ðdRð�Þ=d�Þj�¼0 ¼ 0

c�ðt�; rÞjt�¼0 ¼ 0;

ð@c�ðt�; rÞ=@t�Þjt�¼0 ¼ 0

��ðt�; rÞjt�¼0 ¼ 0;

ð@��ðt�; rÞ=@t�Þjt�¼0 ¼ 0

cþðtþ; rÞjtþ¼0 ¼ �Q lnðr=R1Þ;
ð@cþðtþ; rÞ=@tþÞjtþ¼0 ¼ 0

�þðtþ; rÞjtþ¼0 ¼ Q2 lnðr=R1Þ þG;

ð@�þðtþ; rÞ=@tþÞjtþ¼0 ¼ 0;

(71)

where R1,Q, andG are constants. This data corresponds to
the situation where the shell is momentarily static at r ¼
R1, the field inside vanishes, and the field outside has the
form of a static solution. The form of this data has already
been chosen so that the junction condition c� ¼ cþ is
satisfied. Replacing these expressions in the general equa-
tions of motion we find that we must have

Qe�G

R1

þ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ J2

q ¼ 0

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ J2

q
R1

þ e�G � 1 ¼ 0

(72)
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FIG. 3. Plot of �ð�Þ ¼ Rð�Þ � R0 in the region�10 � � � 10.
The region � < 0 is dominated by the incoming pulse, while that
for � > 0 is dominated by the outgoing pulse, resulting from the
rebound of the pulse on the symmetry axis. The shell is essen-
tially in its equilibrium radius R0 for either � � �15 and
� 	 15.
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FIG. 4. Plot of c�ðt; rÞ in the region 0 � r � R0 ¼ 4, �10 �
t � 10. We notice the propagation of the incoming pulse, an
intermediate interference zone, formed by incoming and out-
going waves, and the eventual falloff of the pulse as it propagates
outside.
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FIG. 5. Plot of cþðt; rÞ in the region 4 � r � 15, �20 � t �
20. We can see the propagation of the incoming pulse towards
the shell, a zone near t ¼ 0 where most of the pulse has gone
through the shell, and the rebound and propagation of the pulse
away from the shell, for t > 0.
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and, for the acceleration of the shell at � ¼ 0 we find

d2R

d�2

���������¼0
¼ J2

R1ðR2
1 þ J2Þ �

ðR2
1 þ 2J2Þ2�

R2
1ðR2

1 þ J2Þ3=2 : (73)

We recall now that for the static solution for a shell with
the same � and J we have

� ¼ J2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

2 þ J2
q

R0

ð2J2 þ R0
2Þ2 ; (74)

where R0 is the equilibrium radius. For small departures
from this radius we may set

R1 ¼ R0 þ 
�; (75)

where � is constant, and we will use 
 as an expansion
parameter that provides the perturbation scale. We also set

Q ¼ �þ 
�1 G ¼ �0 þ 
�1; (76)

where � and �0 are the (static) equilibrium parameters
given in (12), with R ¼ R0.

Replacing (75) and (76) in (72), and expanding to first
order in 
 we find

�1¼2J4ð4R2
0J

2þ4J4�R4
0Þ

R7
0ðR2

0þJ2Þ ��1¼�4J4

R5
0

� (77)

while for the acceleration we find

d2R

d�2

���������¼0
¼ � J2ð2R4

0 � 2J4 � R2
0J

2Þ
R2
0ðR2

0 þ 2J2ÞðR2
0 þ J2Þ2 �; (78)

which coincides with (20). Thus, as originally indicated in
[1], the initial response of the system to the MSRF initial
data is an acceleration towards the equilibrium position.
This, nevertheless does not mean that the system will in
fact return to its equilibrium configuration, after the emis-
sion of some gravitational radiation, as has been analyzed
in detail in [3], where it is found that the system is in fact
unstable under a MSRF perturbation. How can we then
make that result compatible with our perturbation analysis?
To answer this question we go back to the MSRF data of
(71), and, taking into account (75) and (76) we find

cþð0; rÞ ¼ � ln

�
r

R0

�
þ

�
�1 ln

�
r

R0

�
� ��

R0

�

: (79)

But, since in accordance with (77), we must have �1 � 0 in
general, this implies that the presumed ‘‘small’’ perturba-
tion is actually unbounded for large r, irrespective of the
value of 
. Even for the exceptional case �1 ¼ 0, [that

happens for R2
0 ¼ 2ð1þ ffiffiffi

2
p ÞJ2], the ‘‘perturbative’’ data in

(79) does not fall off for large r as would be required if it
could be represented by an expression of the form (69),
with coefficient functions a2ð�þÞ, and b2ð�þÞ, that fall
off for large �þ, and therefore, in no case MSRF data can
be properly considered as representing a small perturba-
tion of the static stable configuration of the system.
We conclude then that, since perturbation theory is not

applicable to MSRF initial data, because it does not cor-
respond to a bounded perturbation, for which, as shown
above, the system is stable about its (static) equilibrium
configuration, it may very well happen that the evolution of
MSRF initial data does not lead to a final static configura-
tion, and there is no contradiction between our results and
those of [3].

IX. COMMENTS

In this paper we have presented an analysis of the
dynamics of a self-gravitating cylindrical thin shell of
counterrotating dust particles. This analysis provides sev-
eral new and to a certain extent unexpected results. In
particular we show that there exists a family of solutions
where the interior of the shell remains flat at all times. For
this family the equation of motion for the radius of the shell
decouples from the radiative modes. We find a first integral
for this equation and show it to be equivalent to that of a
particle in a one-dimensional time-independent potential
for a certain value of its total energy. Depending on the
constants of the motion we have collapsing, periodic or
unbounded solutions. We further analyze under what con-
ditions these solutions are consistent with the field equa-
tions for the gravitational modes, and show that there are
consistent periodic solutions for the full system. We con-
sider next the dynamics of the system close to a stable
static solution in the linearized approximation, where we
assume that the interior is regular. The first unexpected
result is that we have nontrivial solutions for any possible
frequency, and that all these modes are stable. The only
role played by the Newtonian frequency (corresponding to
Newtonian dynamics of the shell) is that it is the only
frequency for which the interior is flat. We thus reach the
conclusion that the system has no ‘‘natural’’ oscillating
frequency that would be slightly modified by the coupling
to the radiative modes, but, rather, we have a system where
this coupling is ‘‘as strong as it can be,’’ fully determining
the behavior of the shell. We find also an infinite family of
antiresonances, where the physical radius of the shell is
constant (to first order).
The fact that we have an infinite set of modes suggests

that these modes could be used to solve the initial value
problem (in the linearized approximation). In fact, we can
formally write an arbitrary solution of the field equations
as an integral transform involving Bessel functions.
Unfortunately, we have not found a way to invert these
transforms in such a way that they can be written in terms
of arbitrary initial data, although this seems to be possible
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in principle. We discuss also some of the reasons that make
this problem special, and provide a particular example to
illustrate features of the general solution. The relation of
our perturbative treatment to the case of MSRF initial data
is also analyzed and the apparent discrepancy with the
results of Nakao, Ida, and Kurita [3] is clarified.
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