6,140 research outputs found

    Search for pulsating PMS stars in NGC 6383

    Full text link
    A search for pulsating pre-main sequence (PMS) stars was performed in the young open cluster NGC 6383 using CCD time series photometry in Johnson B & V filters. With an age of only ~1.7 million years all cluster members later than spectral type A0 have not reached the ZAMS yet, hence being ideal candidates for investigating PMS pulsation among A and F type stars. In total 286 stars have been analyzed using classical Fourier techniques. From about a dozen of stars within the boundaries of the classical instability strip, two stars were found to pulsate: NGC 6383 #170, with five frequencies simultaneously, and NGC 6383 #198, with a single frequency. In addition, NGC 6383 #152 is a suspected PMS variable star, but our data remain inconclusive. Linear, non-adiabatic models assuming PMS evolutionary phase and purely radial pulsation were calculated for the two new PMS pulsators. NGC 6383 #170 appears to pulsate radially in third and fifth overtones, while the other three frequencies seem to be of non-radial nature. NGC 6383 #198 pulsates monoperiodically, most probably in the third radial overtone. Magnitudes and B-V colours were available in the literature for only one third of all stars and we used them for calibrating the remaining.Comment: 12 pages, 11 figures, accepted by MNRA

    The supermassive black hole mass - S\'ersic index relations for bulges and elliptical galaxies

    Full text link
    Scaling relations between supermassive black hole mass, M_BH, and host galaxy properties are a powerful instrument for studying their coevolution. A complete picture involving all of the black hole scaling relations, in which each relation is consistent with the others, is necessary to fully understand the black hole-galaxy connection. The relation between M_BH and the central light concentration of the surrounding bulge, quantified by the S\'ersic index n, may be one of the simplest and strongest such relations, requiring only uncalibrated galaxy images. We have conducted a census of literature S\'ersic index measurements for a sample of 54 local galaxies with directly measured M_BH values. We find a clear M_BH - n relation, despite an appreciable level of scatter due to the heterogeneity of the data. Given the current M_BH - L_sph and the L_sph - n relations, we have additionally derived the expected M_BH - n relations, which are marginally consistent at the 2 sigma level with the observed relations. Elliptical galaxies and the bulges of disc galaxies are each expected to follow two distinct bent M_BH - n relations due to the S\'ersic/core-S\'ersic divide. For the same central light concentration, we predict that M_BH in the S\'ersic bulges of disc galaxies are an order magnitude higher than in S\'ersic elliptical galaxies if they follow the same M_BH - L_sph relation.Comment: 12 pages, 6 figures, 5 tables, accepted for publication in MNRA

    The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei from Reverberation Mapping and Hubble Space Telescope Imaging

    Full text link
    We investigate the relationship between black hole mass and bulge luminosity for AGNs with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M_BH \propto L^{1.0+/-0.1} relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This is somewhat perplexing, as the AGN black hole masses include an overall scaling factor that brings the AGN M_BH-sigma relationship into agreement with that of quiescent galaxies. We discuss biases that may be inherent to the AGN and quiescent galaxy samples and could cause the apparent inconsistency in the forms of their M_BH-L_bulge relationships.Comment: 5 pages, 3 figures and 2 tables, submitted to ApJ Letter

    Elusive Active Galactic Nuclei

    Get PDF
    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically "elusive". X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive AGN in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 10^24 cm^-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN, the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical Narrow Line Region. Elusive AGN may contribute significantly to the 30 keV bump of the X-ray background.Comment: accepted for publication in MNRAS Letters, 6 pages, 3 figures, typos and references correcte

    The Nature of X-ray Bright Optically Normal Galaxies

    Full text link
    Recent X-ray surveys by {\it Chandra} and {\it XMM-Newton} have revealed a population of X-ray bright, optically normal galaxies (XBONGs) at moderate redshifts. We propose that many XBONGs are powered by an inner radiatively inefficient accretion flow (RIAF) plus an outer radiatively efficient thin accretion disk. The absence of optical/UV activity in XBONGs is explained by the truncation of the thin disk near the black hole, while the relatively strong X-ray emission is explained as inverse Compton emission from the hot RIAF. As an example, we show that the spectra of two XBONGs can be fit fairly well with such a model. By comparing these two sources to other accreting black holes, we argue that XBONGs are intermediate in their characteristics between distant luminous active galactic nuclei and nearby low-luminosity nuclei.Comment: 15 pages, 3 figures, the final version accepted by ApJ; substantially shortened but new material adde
    • …
    corecore