18 research outputs found

    Are Cognitive Changes in Hereditary Spastic Paraplegias Restricted to Complicated Forms?

    Get PDF
    Background: Little is known about the cognitive profile of Hereditary Spastic Paraplegias (HSP), where most scientific attention has been given to motor features related to corticospinal tract degeneration.Objectives: We aimed to perform a broad characterization of the cognitive functions of patients with pure and complicated HSP as well as to determine the frequency of abnormal cognitive performances in the studied subtypes.Methods: A two-center cross-sectional case-control study was performed. All individuals underwent cognitive assessment through screening tests (Mini Mental State Examination—MEEM and Montreal Cognitive Assessment—MOCA) and tests to assess specific cognitive functions (Verbal fluency with phonological restriction—FAS; Verbal categorical fluency—FAS-cat and Rey's Verbal Auditory Learning Test -RAVLT).Results: Fifty four patients with genetically confirmed HSP diagnosis, 36 with spastic paraplegia type 4 (SPG4), 5 SPG11, 4 SPG5, 4 cerebrotendinous xanthomatosis (CTX), 3 SPG7 and 2 SPG3A, and 10 healthy, unrelated control subjects, with similar age, sex, and education participated in the study. SPG4 patients had worse performances in MOCA, FAS, FAS-cat, and RAVLT when compared to controls. Most SPG4 patients presented cognitive changes not compatible with dementia, performing poorly in memory, attention and executive functions. SPG5 patients scored lower in executive functions and memory, and SPG7 patients performed poorly on memory tasks. All evaluated cognitive functions were markedly altered in CTX and SPG11 patients.Conclusions: Cognitive abnormalities are frequent in HSP, being more severe in complicated forms. However, cognitive impairments of pure HSPs might impact patients' lives, decreasing families' socioeconomic status and contributing to the overall disease burden

    Myotonic dystrophy type 1: frequency of ophthalmologic findings

    No full text
    ABSTRACT The purpose of the study was to evaluate the frequency of ophthalmologic abnormalities in a cohort of myotonic dystrophy type 1 (DM1) patients and to correlate them with motor function. We reviewed the pathophysiology of cataract and low intraocular pressure (IOP). Method Patients were included after clinical and laboratory diagnosis and after signed informed consent. They were evaluated by Motor Function Measure scale, Portuguese version (MFM-P) and ophthalmic protocol. Results We evaluated 42 patients aged 17 to 64 years (mean 40.7 ± 12.5), 22 of which were men. IOP (n = 41) was reduced in all but one. We found cataract or positivity for surgery in 38 (90.48%) and ptosis in 23 (54.76%). These signs but not IOP were significantly correlated with severity of motor dysfunction. Abnormalities in ocular motility and stereopsis were observed. Conclusion Cataract and ptosis are frequent in DM1 and associated to motor dysfunction. Reduced IOP is also common, but appears not to be related with motor impairment

    Laryngeal Electromyography Techniques And Clinical Use.

    No full text
    Laryngeal electromyography is considered a valuable diagnostic tool for voice disorders. The technique, described almost 70 years ago, evolved 3 decades later, mainly because of the growing interest of laryngologists and speech pathologists. In the authors' opinion, the reduced number of neurophysiologists involved in laryngeal electromyography groups is, at some instance, related to the difficulty to start the learning process and the multidisciplinary approach the field requires. This review highlights the anatomy and physiology needed to perform laryngeal electromyography and its clinical usefulness in the new field known as neurolaryngology.32274-28

    The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles

    Acute cerebellar ataxia: differential diagnosis and clinical approach

    No full text
    ABSTRACT Cerebellar ataxia is a common finding in neurological practice and has a wide variety of causes, ranging from the chronic and slowly-progressive cerebellar degenerations to the acute cerebellar lesions due to infarction, edema and hemorrhage, configuring a true neurological emergency. Acute cerebellar ataxia is a syndrome that occurs in less than 72 hours, in previously healthy subjects. Acute ataxia usually results in hospitalization and extensive laboratory investigation. Clinicians are often faced with decisions on the extent and timing of the initial screening tests, particularly to detect treatable causes. The main group of diseases that may cause acute ataxias discussed in this article are: stroke, infectious, toxic, immune-mediated, paraneoplastic, vitamin deficiency, structural lesions and metabolic diseases. This review focuses on the etiologic and diagnostic considerations for acute ataxia

    The autophagy‐enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado–Joseph disease

    No full text
    Aims Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is the most common autosomal dominantly-inherited ataxia worldwide and is characterised by the accumulation of mutant ataxin-3 (mutATXN3) in different brain regions, leading to neurodegeneration. Currently, there are no available treatments able to block disease progression. In this study, we investigated whether carbamazepine (CBZ) would activate autophagy and mitigate MJD pathology. Methods The autophagy-enhancing activity of CBZ and its effects on clearance of mutATXN3 were evaluated using in vitro and in vivo models of MJD. To investigate the optimal treatment regimen, a daily or intermittent CBZ administration was applied to MJD transgenic mice expressing a truncated human ATXN3 with 69 glutamine repeats. Motor behaviour tests and immunohistology was performed to access the alleviation of MJD-associated motor deficits and neuropathology. A retrospective study was conducted to evaluate the CBZ effect in MJD patients. Results We found that CBZ promoted the activation of autophagy and the degradation of mutATXN3 in MJD models upon short or intermittent, but not daily prolonged, treatment regimens. CBZ up-regulated autophagy through activation of AMPK, which was dependent on the myo-inositol levels. In addition, intermittent CBZ treatment improved motor performance, as well as prevented neuropathology in MJD transgenic mice. However, in patients, no evident differences in SARA scale were found, which was not unexpected given the small number of patients included in the study. Conclusions Our data support the autophagy-enhancing activity of CBZ in the brain and suggest this pharmacological approach as a promising therapy for MJD and other polyglutamine disorders.Fundação para CiĂȘncia e Tecnologia; Richard Chin and Lily Lock Machado-Joseph Disease Research Fund; American Portuguese Biomedical Research Fund (APBRF); National Ataxia Foundation (USA); European Union H2020 program, GA No.643417; EU Joint Program - Neurodegenerative Disease Research (JPND); Competitiveness Factors Operational Program (COMPETE 2020); ERDF through the Regional Operational Program Center 2020info:eu-repo/semantics/publishedVersio

    Corticospinal tract involvement in spinocerebellar ataxia type 3: a diffusion tensor imaging study

    No full text
    The aim of this study was to evaluate the integrity of the corticospinal tracts (CST) in patients with SCA3 and age- and gender-matched healthy control subjects using diffusion tensor imaging (DTI). We also looked at the clinical correlates of such diffusivity abnormalities. We assessed 2 cohorts from different Brazilian centers: cohort 1 (n = 29) scanned in a 1.5 T magnet and cohort 2 (n = 91) scanned in a 3.0 T magnet. We used Pearson’s coefficients to assess the correlation of CST DTI parameters and ataxia severity (expressed by SARA scores). Two different results were obtained. Cohort 1 showed no significant between-group differences in DTI parameters. Cohort 2 showed significant between-group differences in the FA values in the bilateral precentral gyri (p < 0.001), bilateral superior corona radiata (p < 0.001), bilateral posterior limb of the internal capsule (p < 0.001), bilateral cerebral peduncle (p < 0.001), and bilateral basis pontis (p < 0.001). There was moderate correlation between CST diffusivity parameters and SARA scores in cohort 2 (Pearson correlation coefficient: 0.40–0.59). DTI particularly at 3 T is able to uncover and quantify CST damage in SCA3. Moreover, CST microstructural damage may contribute with ataxia severity in the disease6321722
    corecore