16 research outputs found

    The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype

    Get PDF
    Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques

    Regulation of Indoleamine 2,3-Dioxygenase Expression in Simian Immunodeficiency Virus-Infected Monkey Brains

    No full text
    The human immunodeficiency virus type 1-associated cognitive-motor disorder, including the AIDS dementia complex, is characterized by brain functional abnormalities that are associated with injury initiated by viral infection of the brain. Indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme in tryptophan catabolism in extrahepatic tissues, can lead to neurotoxicity through the generation of quinolinic acid and immunosuppression and can alter brain chemistry via depletion of tryptophan. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model of AIDS, we demonstrate that cells of the macrophage lineage are the main source for expression of IDO in the SIV-infected monkey brain. Animals with SIV encephalitis have the highest levels of IDO mRNA, and the level of IDO correlates with gamma interferon (IFN-γ) and viral load levels. In vitro studies on mouse microglia reveal that IFN-γ is the primary inducer of IDO expression. These findings demonstrate the link between IDO expression, IFN-γ levels, and brain pathology signs observed in neuro-AIDS

    Dopamine and its receptors play a role in the modulation of CCR5 expression in innate immune cells following exposure to Methamphetamine: Implications to HIV infection.

    Get PDF
    The Human Immunodeficiency Virus (HIV) infects cells in the Central Nervous System (CNS), where the access of antiretrovirals and antibodies that can kill the virus may be challenging. As a result of the early HIV entry in the brain, infected individuals develop inflammation and neurological deficits at various levels, which are aggravated by drugs of abuse. In the non-human primate model of HIV, we have previously shown that drugs of abuse such as Methamphetamine (Meth) increase brain viral load in correlation with a higher number of CCR5-expressing myeloid cells. CCR5 is a chemokine receptor that may be involved in increasing inflammation, but also, it is a co-receptor for viral entry into target cells. CCR5-expressing myeloid cells are the main targets of HIV in the CNS. Thus, the identification of factors and mechanisms that impact the expression of CCR5 in the brain is critical, as changes in CCR5 levels may affect the infection in the brain. Using a well-characterized in vitro system, with the THP1 human macrophage cell line, we have investigated the hypothesis that the expression of CCR5 is acutely affected by Meth, and examined pathways by which this effect could happen. We found that Meth plays a direct role by regulating the abundance and nuclear translocation of transcription factors with binding sites in the CCR5 promoter. However, we found that the main factor that modifies the CCR5 gene promoter at the epigenetic level towards transcription is Dopamine (DA), a neurotransmitter that is produced primarily in brain regions that are rich in dopaminergic neurons. In THP1 cells, the effect of DA on innate immune CCR5 transcription was mediated by DA receptors (DRDs), mainly DRD4. We also identified a role for DRD1 in suppressing CCR5 expression in this myeloid cell system, with potential implications for therapy. The effect of DA on innate immune CCR5 expression was also detectable on the cell surface during acute time-points, using low doses. In addition, HIV Tat acted by enhancing the surface expression of CCR5, in spite of its poor effect on transcription. Overall, our data suggests that the exposure of myeloid cells to Meth in the context of presence of HIV peptides such as Tat, may affect the number of HIV targets by modulating CCR5 expression, through a combination of DA-dependent and-independent mechanisms. Other drugs that increase DA may affect similar mechanisms. The implications of these epigenetic and translational mechanisms in enhancing HIV infection in the brain and elsewhere are demonstrated
    corecore