2,074 research outputs found

    Measurements of CP-conserving trilinear gauge boson couplings WWV (V ≡ γ,Z) in e+e− collisions at LEP2

    Get PDF
    The data taken by DELPHI at centre-of-mass energies between 189 and 209 GeV are used to place limits on the CP-conserving trilinear gauge boson couplings ΔgZ1 , λ γ and Δκ γ associated to W + W − and single W production at LEP2. Using data from the jj ℓ ν, jjjj, jjX and ℓ X final states, where j, ℓ and X represent a jet, a lepton and missing four-momentum, respectively, the following limits are set on the couplings when one parameter is allowed to vary and the others are set to their Standard Model values of zero: ΔgZ1=−0.025+0.033−0.030,\vskip6ptλγ=0.002+0.035−0.035and\vskip6ptΔκγ=0.024+0.077−0.081. Results are also presented when two or three parameters are allowed to vary. All observations are consistent with the predictions of the Standard Model and supersede the previous results on these gauge coupling parameters published by DELPHI

    Search for single top quark production via contact interactions at LEP2

    Get PDF
    Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-ofmass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb?1. No evidence for a signal was found. Limits on the energy scale ?, were set for scalar-, vector- and tensor-like coupling scenarios.We are greatly indebted to our technical collaborators, to the members of the CERN-SL Division for the excellent performance of the LEP collider, and to the funding agencies for their support in building and operating the DELPHI detector. We acknowledge in particular the support of Austrian Federal Ministry of Education, Science and Culture, GZ 616.364/2-III/2a/98, FNRS–FWO, Flanders Institute to encourage scientific and technological research in the industry (IWT) and Belgian Federal Office for Scientific, Technical and Cultural affairs (OSTC), Belgium, FINEP, CNPq, CAPES, FUJB and FAPERJ, Brazil, Ministry of Education of the Czech Republic, project LC527, Academy of Sciences of the Czech Republic, project AV0Z10100502, Commission of the European Communities (DG XII), Direction des Sciences de la Matiere, CEA, France, ` Bundesministerium fur Bildung, Wissenschaft, Forschung und Tech- ¨ nologie, Germany, General Secretariat for Research and Technology, Greece, National Science Foundation (NWO) and Foundation for Research on Matter (FOM), The Netherlands, Norwegian Research Council, State Committee for Scientific Research, Poland, SPUB-M/CERN/PO3/ DZ296/2000, SPUB-M/CERN/PO3/DZ297/2000, 2P03B 104 19 and 2P03B 69 23(2002-2004), FCT—Fundação para a Ciência e Tecnologia, Portugal, Vedecka grantova agentura MS SR, Slovakia, Nr. 95/5195/134, Ministry of Science and Technology of the Republic of Slovenia, CICYT, Spain, AEN99-0950 and AEN99-0761, The Swedish Research Council, The Science and Technology Facilities Council, UK, Department of Energy, USA, DE-FG02-01ER41155, EEC RTN contract HPRN-CT-00292-2002

    A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole

    Get PDF
    The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, Eweak B . The average value of xweak B = Eweak B /Ebeam is measured to be 0.699 ± 0.011. The resulting xweak B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of bhadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA 6.156 from DELPHI data: a = 1.84+0.23 ?0.21 and b = 0.642+0.073 ?0.063 GeV?2, with a correlation factor ? = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of xweak B is found to be 0.7092 ± 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a = 1.48+0.11 ?0.10 and b = 0.509+0.024 ?0.023 GeV?2, with a correlation factor ? = 92.6%

    Epitaxial integration of CoFeâ‚‚Oâ‚„ thin films on Si (001) surfaces using TiN buffer layers

    Get PDF
    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFeâ‚‚, or ceramic, CoFeâ‚‚2Oâ‚„, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFeâ‚‚Oâ‚„ [100]/TiN [100]/Si [100]. Mossbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in- plane anisotropy depends on the lattice mismatch between CoFeâ‚‚Oâ‚‚ and TiN, which is larger for CoFeâ‚‚Oâ‚„ thin films grown on the reactive sputtering process with ceramic targets

    Search for heavy stable charged particles in pp collisions at ?s = 7 TeV

    Get PDF
    The result of a search at the LHC for heavy stable charged particles produced in pp collisions at s?=7TeV is described. The data sample was collected with the CMS detector and corresponds to an integrated luminosity of 3.1 pb?1. Momentum and ionization-energy-loss measurements in the inner tracker detector are used to identify tracks compatible with heavy slow-moving particles. Additionally, tracks passing muon identification requirements are also analyzed for the same signature. In each case, no candidate passes the selection, with an expected background of less than 0.1 events. A lower limit at the 95% confidence level on the mass of a stable gluino is set at 398GeV/c 2, using a conventional model of nuclear interactions that allows charged hadrons containing this particle to reach the muon detectors. A lower limit of 311 GeV/c 2 is also set for a stable gluino in a conservative scenario of complete charge suppression, where any hadron containing this particle becomes neutral before reaching the muon detectors.We are grateful to Anna Kulesza and Michael Krämer for providing the theoretical production cross sections and associated uncertainties at next-to-leading order for pair production of eg and ˜t1. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Search for a W'' boson decaying to a muon and a neutrino in pp collisions at vs=7 TeV

    Get PDF
    A new heavy gauge boson, , decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass energy of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 pb?1. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon?neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like . The mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS

    Get PDF
    A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at ?s = 7 TeV corresponding to an integrated luminosity of 1 fb?1, collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark?quark, quark?gluon, and gluon?gluon pairs. The data exclude new par- ticles predicted in the following models at the 95% confidence level: string resonances with mass less than 4.00 TeV, E6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W? bosons with mass less than 1.51 TeV. These results extend previous exclusions from the dijet mass search technique.We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). We thank Can Kilic for calculations of the string resonance cross section

    Search for resonances in the dilepton mass distribution in pp collisions at √s = 7TeV

    Get PDF
    A search for narrow resonances at high mass in the dimuon and dielectron channels has been performed by the CMS experiment at the CERN LHC, using pp collision data recorded at √s = 7TeV. The event samples correspond to integrated luminosities of 40 pb−1 in the dimuon channel and 35 pb−1 in the dielectron channel. Heavy dilepton resonances are predicted in theoretical models with extra gauge bosons (Z′) or as Kaluza-Klein graviton excitations (GKK) in the Randall-Sundrum model. Upper limits on the inclusive cross section of Z′(GKK) ! ℓ+ℓ− relative to Z ! ℓ+ℓ− are presented. These limits exclude at 95% confidence level a Z′ with standard-model-like couplings below 1140 GeV, the superstring-inspired Z′ ψ below 887 GeV, and, for values of the coupling parameter k/MPl of 0.05 (0.1), Kaluza-Klein gravitons below 855 (1079) GeV.We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Search for light resonances decaying into pairs of muons as a signal of new physics

    Get PDF
    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 pb?1 . The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Search for a heavy bottom-like quark in pp collisions at √s=7 TeV.

    Get PDF
    A search for pair-produced bottom-like quarks in pp collisions at √s = 7 TeV is conducted with the CMS experiment at the LHC. The decay b’→tW is considered in this search. The b’b ̅→tW−.t ̅W+ process can be identified by the distinctive signature of trileptons and same-sign dileptons. With a data sample corresponding to an integrated luminosity of 34 pb−1, no excess above the standard model background predictions is observed and a b_ quark with a mass between 255 and 361 GeV/c2 is excluded at the 95% confidence level.We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore