25 research outputs found

    Plzf Regulates Germline Progenitor Self-Renewal by Opposing mTORC1

    Get PDF
    SummaryHyperactivity of mTORC1, a key mediator of cell growth, leads to stem cell depletion, although the underlying mechanisms are poorly defined. Using spermatogonial progenitor cells (SPCs) as a model system, we show that mTORC1 impairs stem cell maintenance by a negative feedback from mTORC1 to receptors required to transduce niche-derived signals. We find that SPCs lacking Plzf, a transcription factor essential for SPC maintenance, have enhanced mTORC1 activity. Aberrant mTORC1 activation in Plzf −/− SPCs inhibits their response to GDNF, a growth factor critical for SPC self-renewal, via negative feedback at the level of the GDNF receptor. Plzf opposes mTORC1 activity by inducing expression of the mTORC1 inhibitor Redd1. Thus, we identify the mTORC1-Plzf functional interaction as a critical rheostat for maintenance of the spermatogonial pool and propose a model whereby negative feedback from mTORC1 to the GDNF receptor balances SPC growth with self-renewal

    Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells

    Full text link
    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming

    Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation

    Get PDF
    Pathogenic de novo mutations increase with fathers’ age and could be amplified through competition between genetically distinct subpopulations of spermatogonial stem cells (SSCs). Here, we tested the fitness of SSCs bearing wild-type human FGFR2 or an Apert syndrome mutant, FGFR2 (S252W), to provide experimental evidence for SSC competition. The S252W allele conferred enhanced FGFR2-mediated signaling, particularly at very low concentrations of ligand, and also subtle changes in gene expression. Mutant SSCs exhibited improved competitiveness in vitro and increased stem cell activity in vivo upon transplantation. The fitness advantage in vitro only occurred in low concentrations of fibroblast growth factor (FGF), was independent of FGF-driven proliferation, and was accompanied by increased response to glial cell line-derived neurotrophic factor (GDNF). Our studies provide experimental evidence of enhanced stem cell fitness in SSCs bearing a paternal age-associated mutation. Our model will be useful for interrogating other candidate mutations in the future to reveal mechanisms of disease risk

    Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification

    Get PDF
    SummaryHuman male germ cell tumors (GCTs) are derived from primordial germ cells (PGCs). The master pluripotency regulator and neuroectodermal lineage effector transcription factor SOX2 is repressed in PGCs and the seminoma (SEM) subset of GCTs. The mechanism of SOX2 repression and its significance to GC and GCT development currently are not understood. Here, we show that SOX2 repression in SEM-derived TCam-2 cells is mediated by the Polycomb repressive complex (PcG) and the repressive H3K27me3 chromatin mark that are enriched at its promoter. Furthermore, SOX2 repression in TCam-2 cells can be abrogated by recruitment of the constitutively expressed H3K27 demethylase UTX to the SOX2 promoter through retinoid signaling, leading to expression of neuronal and other lineage genes. SOX17 has been shown to initiate human PGC specification, with its target PRDM1 suppressing mesendodermal genes. Our results are consistent with a role for SOX2 repression in normal germline development by suppressing neuroectodermal genes

    Proangiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells

    No full text
    A quantitative in vivo angiogenesis model employing collagen onplants placed on the chick embryo chorioallantoic membrane (CAM) has been used in this study to assess the spatial and temporal associations between neutrophil-like inflammatory cells, namely chicken heterophils, and the development of new blood vessels. Previously we have demonstrated that monocytes/macrophages infiltrating the onplants were associated with extracellular matrix remodeling and angiogenesis, in particular by delivering MMP-13 collagenase. By introducing chicken gelatinase B (chMMP-9) as a specific marker for heterophils, we now show that the onset and extent of angiogenesis induced by purified growth factors or by human HT-1080 fibrosarcoma cells correlated with the initial influx of chMMP-9–positive heterophils. This early heterophil arrival was followed by the infiltration of monocytes/macrophages and appeared to sustain further blood vessel formation. The disruption of inflammatory cell influx by 2 mechanistically distinct anti-inflammatory drugs, cortisone and ibuprofen, significantly inhibited angiogenesis, indicating a functional involvement of these inflammatory cells in new blood vessel development. A direct addition of isolated heterophils or purified chMMP-9 into the HT-1080 onplants engrafted into cortisone- or ibuprofen-treated embryos reversed the antiangiogenic effects of the drugs. The exogenously added heterophils induced in vivo a further infiltration of endogenous heterophils and monocytes and dramatically rescued the impaired angiogenesis, highlighting the importance of early inflammatory leukocytes in tumor-induced angiogenesis. Moreover, purified heterophils incorporated into onplants lacking growth factors or tumor cells induced angiogenesis in nontreated embryos, further indicating a direct proangiogenic role for neutrophil-like leukocytes
    corecore