55 research outputs found

    The H and D Polarized Target for Spin–Filtering Measurements at COSY

    Get PDF
    In the main frame of the PAX (Polarized Antiproton eXperiments) collaboration, which engaged the challenging purpose of polarizing antiproton beams, the possibility to have H or D polarized targets requires a daily switchable source and its diagnostics: mainly change is a dual cavity tunable for H and D. The commissioning of PAX has been fullfilled, for the transverse case, on the COSY (COoler SYnchrotron) proton ring, achieving milestones on spin–dependent cross–section measurements. Now the longitudinal case could provide sensitive polarization results. An H or D source allows the exploration of the spin–filtering process with a deuterium polarized target, and opens new chances for testing Time Reversal Invariance at COSY (TRIC)

    The ASTAROTH project

    Get PDF
    The most discussed topic in direct search for dark matter is arguably the verification of the DAMA claim. In fact, the observed annual modulation of the signal rate in an array of NaI(Tl) detectors can be interpreted as the awaited signature of dark matter interaction. Several experimental groups are currently engaged in the attempt to verify such a game-changing claim with the same target material. However, all present-day designs are based on a light readout via Photomultiplier Tubes, whose high noise makes it challenging to achieve a low background in the 1-6 keV energy region of the signal. Even harder it would be to break below 1 keV energy threshold, where a large fraction of the signal potentially awaits to be uncovered. ASTAROTH is an R\&D project to overcome these limitations by using Silicon Photomultipliers (SiPM) matrices to collect scintillation light from NaI(Tl). The all-active design based on cubic crystals is operating in the 87-150 K temperature range where SiPM noise can be even a hundred times lower with respect to PMTs. The cryostat was developed following an innovative design and is based on a copper chamber immersed in a liquid argon bath that can be instrumented as a veto detector. We have characterized separately the crystal and the SiPM response at low temperature and we have proceeded to the first operation of a NaI(Tl) crystal read by SiPM in cryogeny.Comment: proceedings of the LRT 2022 conferenc

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF

    Erratum: Towards a muon collider

    Get PDF
    The original online version of this article was revised: The additional reference [139] has been added. Tao Han’s ORICD ID has been incorrectly assigned to Chengcheng Han and Chengcheng Han’s ORCID ID to Tao Han. Yang Ma’s ORCID ID has been incorrectly assigned to Lianliang Ma, and Lianliang Ma’s ORCID ID to Yang Ma. The original article has been corrected

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    First consideration on magnetic field for an accumulation cell

    No full text
    The short memo introduces the use of high temperature superconductors for the transverse field of a polarized gaseous target cell for PAX

    Electromagnetic Study of a Round Coil Superferric Magnet

    No full text
    A novel type of superferric magnets suitable to arbitrary multipole orders was proposed by I. F. Malyshev and later by V. Kashikhin. This new topology, which we refer to as round coil superferric magnets (RCSM), allows a great simplification of the superconducting part, which in the simplest case may be composed by a single round coil, which has intrinsically a rather large bending radius allowing the use of strain-sensitive superconductors. INFN is designing and building a prototype of a multipolar corrector magnet based on this geometry and using MgB2 tapes. In this paper, we investigate a number of issues pertaining to the electromagnetic characteristics of RCSM. The RCSM magnetic has inherently even harmonics, in addition to usual odd ones and a solenoidal component. Either (but not both) disappears when integrated using a one-coil or a two-coil specular design. We investigate the effect of saturation on the multipolar components and on the load line, since in RCSM, saturation plays a role that differs both from conventional superferric magnets and from round yoke design type
    • …
    corecore