506 research outputs found
The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments
This study presents the proof-of-concept of the "Oil-Spill Snorkel": a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The "Oil-Spill Snorkel" consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O-2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 1% (p = 0.004) and 21 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the "Oil-Spill Snorkel" potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable configurations for field applications
Fibroblast growth factor modulates mast cell recruitment in a murine model of prostate cancer
Mast cells are important modifiers of prostate tumor microenvironment. The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system plays a non-redundant autocrine/paracrine role in the growth, vascularization and progression of prostate tumors. Accordingly, the FGF antagonist long pentraxin-3 (PTX3) and the PTX3-derived small molecule FGF-trap NSC12 have been shown to inhibit the growth and vascularization of different FGF-dependent tumor types, including prostate cancer. In this study, we show that recombinant FGF2 is able to cause mast cell recruitment in vivo in the Matrigel plug assay. Conversely, PTX3 overexpression in transgenic mice or treatment with the FGF inhibitor NSC12 result in a significant inhibition of the growth and vascularization of TRAMP-C2 tumor grafts, a murine model of prostate cancer, that were paralleled by a decrease of mast cell infiltrate into the lesion. These data confirm and extend previous observations about the capacity of mast cells to respond chemotactically to FGF2 stimulation and provide evidence about a relationship among mast cell recruitment, angiogenesis, and tumor growth in human prostate adenocarcinom
A tool for the quantification of radial neo-vessels in chick chorioallantoic membrane angiogenic assays
Angiogenesis, the process of new blood vessels formation, plays a key role in different physiological and pathological conditions and it is considered a promising target for the development of new anti-inflammatory and anti-tumor therapies. Several assays have been developed to mimic the angiogenic process in vitro and in vivo. Here we propose a technique for the quantification of the pro-angiogenic or anti-angiogenic responses induced by different molecules when implanted in vivo on the chick embryo chorioallantoic membrane (CAM). At day 11 of development CAM is completely vascularized and neo-vessels induced by exogenous molecules converge radially to the implant. Our algorithm is an effective and rapid tool to characterize molecules endowed with proor anti-angiogenic effects by means of the quantification of the vessels present in the CAM macroscopic images. Based on conventional and dedicated image morphology tools, the proposed technique is able to discriminate radial from non-radial vessels, excluding the last ones from the count
Brain angioarchitecture and intussusceptive microvascular growth in a murine model of Krabbe disease
Abstract Defects of the angiogenic process occur in the
brain of twitcher mouse, an authentic model of human
Krabbe disease caused by genetic deficiency of lysosomal
b-galactosylceramidase (GALC), leading to lethal neurological
dysfunctions and accumulation of neurotoxic psychosine
in the central nervous system. Here, quantitative
computational analysis was used to explore the alterations
of brain angioarchitecture in twitcher mice. To this aim,
customized ImageJ routines were used to assess calibers,
amounts, lengths and spatial dispersion of CD31? vessels
in 3D volumes from the postnatal frontal cortex of twitcher
animals. The results showed a decrease in CD31
immunoreactivity in twitcher brain with a marked reduction
in total vessel lengths coupled with increased vessel
fragmentation. No significant changes were instead
observed for the spatial dispersion of brain vessels
throughout volumes or in vascular calibers. Notably, no
CD31? vessel changes were detected in twitcher kidneys in
which psychosine accumulates at very low levels, thus
confirming the specificity of the effect. Microvascular
corrosion casting followed by scanning electron microscopy
morphometry confirmed the presence of significant
alterations of the functional angioarchitecture of the brain
cortex of twitcher mice with reduction in microvascular
density, vascular branch remodeling and intussusceptive
angiogenesis. Intussusceptive microvascular growth, con-
firmed by histological analysis, was paralleled by alterations
of the expression of intussusception-related genes in
twitcher brain. Our data support the hypothesis that a
marked decrease in vascular development concurs to the
onset of neuropathological lesions in twitcher brain and
suggest that neuroinflammation-driven intussusceptive
responses may represent an attempt to compensate
impaired sprouting angiogenesis
Synthesis, Structural Elucidation, and Biological Evaluation of NSC12, an Orally Available Fibroblast Growth Factor (FGF) Ligand Trap for the Treatment of FGF-Dependent Lung Tumors
NSC12 is an orally available pan-FGF trap able to inhibit FGF2/FGFR interaction and endowed with promising antitumor activity. It was identified by virtual screening from a NCI small molecule library, but no data were available about its synthesis, stereochemistry, and physicochemical properties. We report here a synthetic route that allowed us to characterize and unambiguously identify the structure of the active compound by a combination of NMR spectroscopy and in silico conformational analysis. The synthetic protocol allowed us to sustain experiments aimed at assessing its therapeutic potential for the treatment of FGF-dependent lung cancers. A crucial step in the synthesis generated a couple of diastereoisomers, with only one able to act as a FGF trap molecule and to inhibit FGF-dependent receptor activation, cell proliferation, and tumor growth when tested in vitro and in vivo on murine and human lung cancer cells
A long pentraxin-3-derived pentapeptide for the therapy of FGF8b-driven steroid hormone-regulated cancers
Fibroblast growth factor-8b (FGF8b) affects the epithelial/stromal compartments of steroid hormone-regulated tumors by exerting an autocrine activity on cancer cells and a paracrine pro-angiogenic function, thus contributing to tumor progression. The FGF8b/FGF receptor (FGFR) system may therefore represent a target for the treatment of steroid hormone-regulated tumors. The soluble pattern recognition receptor long pentraxin-3 (PTX3) binds various FGFs, including FGF2 and FGF8b, thus inhibiting the angiogenic and tumorigenic activity of androgen-regulated tumor cells. Nevertheless, the complex/proteinaceous structure of PTX3 hampers its pharmacological exploitation. In this context, the acetylated pentapeptide Ac-ARPCA-NH2 (ARPCA), corresponding to the N-terminal amino acid sequence PTX3(100-104), was identified as a minimal FGF2-binding peptide able to antagonize the biological activity of FGF2. Here, we demonstrate that ARPCA binds FGF8b and inhibits its capacity to form FGFR1-mediated ternary complexes with heparan sulphate proteoglycans. As a FGF8b antagonist, ARPCA inhibits FGFR1 activation and signalling in endothelial cells, hampering the angiogenic activity exerted in vitro and in vivo by FGF8b. Also, ARPCA suppresses the angiogenic and tumorigenic potential of prototypic androgen/FGF8b-dependent Shionogi 115 mammary carcinoma cells and of androgen/FGF8b/FGF2-dependent TRAMP-C2 prostate cancer cells. In conclusion, ARPCA represents a novel FGF8b antagonist with translational implications for the therapy of steroid hormone-regulated tumor
Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist
Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent activation of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2). BMP antagonists may act as covalent or non-covalent homodimers or in a monomeric form, while VEGFRs ligands are usually dimeric. However, the oligomeric state of gremlin and its role in modulating the biological activity of the protein remain to be elucidated.Here we show that gremlin is expressed in vitro and in vivo both as a monomer and as a covalently linked homodimer. Mutagenesis of amino acid residue Cys141 prevents gremlin dimerization leading to the formation of gremlinC141A monomers. GremlinC141A monomer retains a BMP antagonist activity similar to the wild-type dimer, but is devoid of a significant angiogenic capacity. Notably, we found that gremlinC141A mutant engages VEGFR2 in a non-productive manner, thus acting as receptor antagonist. Accordingly, both gremlinC141A and wild-type monomers inhibit angiogenesis driven by dimeric gremlin or VEGF-A165. Moreover, by acting as a VEGFR2 antagonist, gremlinC141A inhibits the angiogenic and tumorigenic potential of murine breast and prostate cancer cells in vivo.In conclusion, our data show that gremlin exists in multiple forms endowed with specific bioactivities and provide new insights into the molecular bases of gremlin dimerization. Furthermore, we propose gremlin monomer as a new inhibitor of VEGFR2 signalling during tumor growth
Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans
Tat, the transactivator protein of human immunodeficiency virus-1, has the unusual capacity of being internalized by cells when present in the extracellular milieu. This property can be exploited for the cellular delivery of heterologous proteins fused to Tat both in cell culture and in living animals. Here we provide genetic and biochemical evidence that cell membrane heparan sulfate (HS) proteoglycans act as receptors for extracellular Tat uptake. Cells genetically defective in the biosynthesis of fully sulfated HS are selectively impaired in the internalization of recombinant Tat fused to the green fluorescent protein, as evaluated by both flow cytometry and functional assays. In wild type cells, Tat uptake is competitively inhibited by soluble heparin and by treatment with glycosaminoglycan lyases specifically degrading HS chains. Cell surface HS proteoglycans also mediate physiological internalization of Tat green fluorescent protein released from neighboring producing cells. In contrast to extracellular Tat uptake, both wild type cells and cells genetically impaired in proteoglycan synthesis are equally proficient in the extracellular release of Tat, thus indicating that proteoglycans are not required for this process. The ubiquitous distribution of HS proteoglycans is consistent with the efficient intracellular delivery of heterologous proteins fused with Tat to different mammalian cell types
- …
