1,332 research outputs found

    Distributed and Collaborative Software Evolution Analysis with Churrasco

    Get PDF
    AbstractAnalyzing the evolution of large and long-lived software systems is a complex problem that requires extensive tool support due to the amount and complexity of the data that needs to be processed. In this paper, we present Churrasco, a tool to support collaborative software evolution analysis through a web interface. After describing the tool and its architecture, we provide a usage scenario of Churrasco on a large open source software system, and we present two collaboration experiments performed with, respectively, 8 and 4 participants

    Evaluating defect prediction approaches: a benchmark and an extensive comparison

    Get PDF
    Reliably predicting software defects is one of the holy grails of software engineering. Researchers have devised and implemented a plethora of defect/bug prediction approaches varying in terms of accuracy, complexity and the input data they require. However, the absence of an established benchmark makes it hard, if not impossible, to compare approaches. We present a benchmark for defect prediction, in the form of a publicly available dataset consisting of several software systems, and provide an extensive comparison of well-known bug prediction approaches, together with novel approaches we devised. We evaluate the performance of the approaches using different performance indicators: classification of entities as defect-prone or not, ranking of the entities, with and without taking into account the effort to review an entity. We performed three sets of experiments aimed at (1) comparing the approaches across different systems, (2) testing whether the differences in performance are statistically significant, and (3) investigating the stability of approaches across different learners. Our results indicate that, while some approaches perform better than others in a statistically significant manner, external validity in defect prediction is still an open problem, as generalizing results to different contexts/learners proved to be a partially unsuccessful endeavo

    LOCALIZED OSCILLATIONS IN DIFFUSIVELY COUPLED CYCLIC NEGATIVE FEEDBACK SYSTEMS

    Get PDF
    Oscillations in networks composed of Cyclic Negative Feedback systems (CNF systems) are widely used to mimic many periodic phenomena occurring in systems biology. In particular, the possible coexistence of different attractors permits to suitably describe the differentiating processes arising in living cells. The aim of the manuscript is to characterize, through a spec- tral based technique, the complex global dynamical behaviors emerging in arrays of diffusively coupled CNF systems

    Entwurf der Systemunterstützung des verteilten Engineering mit Axiomatic Design [online]

    Get PDF

    On porting software visualization tools to the web

    Get PDF
    Software systems are hard to understand due to the complexity and the sheer size of the data to be analyzed. Software visualization tools are a great help as they can sum up large quantities of data in dense, meaningful pictures. Traditionally, such tools come in the form of desktop applications. Modern web frameworks are about to change this status quo, as building software visualization tools as web applications can help in making them available to a larger audience in a collaborative setting. Such a migration comes with a number of promises, perils, and technical implications that must be considered before starting any migration process. In this paper, we share our experiences in porting two such tools to the web and provide guidelines about the porting. In particular, we discuss promises and perils that go hand in hand with such an endeavor and present a number of technological alternatives that are available to implement web-based visualization

    Adaptive Multi-Priority Rule Approach To Control Agile Disassembly Systems In Remanufacturing

    Get PDF
    End-of-Life (EOL) products in remanufacturing are prone to a high degree of uncertainty in terms of product quantity and quality. Therefore, the industrial shift towards a circular economy emphasizes the need for agile and hybrid disassembly systems. These systems feature a dynamic material flow. Besides that, they combine the endurance of robots with the dexterity of human operators for an effective and economically reasonable EOL-product treatment. Moreover, being reconfigurable, agile disassembly systems allow an alignment of their functional and quantitative capacity to volatile production programs. However, changes in both the system configuration and the production program to be processed call for adaptive approaches to production control. This paper proposes a multi-priority rule heuristic combined with an optimization tool for adaptive re-parameterization. First, domain-specific priority rules are introduced and incorporated into a weighted priority function for disassembly task allocation. Besides that, a novel metaheuristic parameter optimizer is devised to facilitate the adaption of weights in response to evolving requirements in a reasonable timeframe. Different metaheuristics such as simulated annealing or particle swarm optimization are incorporated as black-box optimizers. Subsequently, the performance of these metaheuristics is meticulously evaluated across six distinct test cases, employing discrete event simulation for evaluation, with a primary focus on measuring both speed and solution quality. To gauge the efficacy of the approach, a robust set of weights is employed as a benchmark. Encouragingly, the results of the experimentation reveal that the metaheuristics exhibit a notable proficiency in rapidly identifying high-quality solutions. The results are promising in that the metaheuristics can quickly find reasonable solutions, thus illustrating the compelling potential in enhancing the efficiency of agile disassembly systems

    Adaptive Multi-Priority Rule Approach To Control Agile Disassembly Systems In Remanufacturing

    Get PDF
    End-of-Life (EOL) products in remanufacturing are prone to a high degree of uncertainty in terms of product quantity and quality. Therefore, the industrial shift towards a circular economy emphasizes the need for agile and hybrid disassembly systems. These systems feature a dynamic material flow. Besides that, they combine the endurance of robots with the dexterity of human operators for an effective and economically reasonable EOL-product treatment. Moreover, being reconfigurable, agile disassembly systems allow an alignment of their functional and quantitative capacity to volatile production programs. However, changes in both the system configuration and the production program to be processed call for adaptive approaches to production control. This paper proposes a multi-priority rule heuristic combined with an optimization tool for adaptive re-parameterization. First, domain-specific priority rules are introduced and incorporated into a weighted priority function for disassembly task allocation. Besides that, a novel metaheuristic parameter optimizer is devised to facilitate the adaption of weights in response to evolving requirements in a reasonable timeframe. Different metaheuristics such as simulated annealing or particle swarm optimization are incorporated as black-box optimizers. Subsequently, the performance of these metaheuristics is meticulously evaluated across six distinct test cases, employing discrete event simulation for evaluation, with a primary focus on measuring both speed and solution quality. To gauge the efficacy of the approach, a robust set of weights is employed as a benchmark. Encouragingly, the results of the experimentation reveal that the metaheuristics exhibit a notable proficiency in rapidly identifying high-quality solutions. The results are promising in that the metaheuristics can quickly find reasonable solutions, thus illustrating the compelling potential in enhancing the efficiency of agile disassembly systems

    Fluid Automation - A Definition and an Application in Remanufacturing Production Systems

    Get PDF
    Production systems must be able to quickly adapt to changing requirements. Especially in the field of remanufacturing, the uncertainty in the state of the incoming products is very high. Several adaptation mechanisms can be applied leading to agile and changeable production systems. Among these, adapting the degree of automation with respect to changeover times and high investment costs is one of the most challenging mechanisms. However, not only long-term changes, but also short-term adaptations can lead to enormous potentials, e.g. when night shifts can be supported by robots and thus higher labor costs and unfavorable working conditions at night can be avoided. These changes in the degree of automation on an operational level are referred to as fluid automation, which will be defined in this paper. The mechanisms of fluid automation are presented together with a case study showing its application on a disassembly station for electrical drives

    Extended Production Planning of Reconfigurable Manufacturing Systems by Means of Simulation-based Optimization

    Get PDF
    Reconfigurable manufacturing systems (RMS) are capable of adjusting their operating point to the requirements of current customer demand with high degrees of freedom. In light of recent events, such as the covid crisis or the chip crisis, this reconfigurability proves to be crucial for efficient manufacturing of goods. Reconfigurability aims thereby not only at adjust production capacities but also for fast integration of new product variants or technologies. However, the operation of such systems is linked to high efforts concerning manual work in production planning and control. Simulation-based optimization provides the possibility to automate processes in production planning and control with the advantage of relying on mostly existing models such as material flow simulations. This paper studies the capabilities of the meta heuristics evolutionary algorithm, linear annealing and tabu search to automate the search for optimal production reconfiguration strategies. Two distinct use cases are regarded: an increase of customer demand and the introduction of a previously unknown product variant. A parametrized material flow simulation is used as function approximator for the optimizers, whereby the production system's structure as well as logic are target variables of the optimizers. The analysis shows that meta-heuristics find good solutions in a short time with only little manual configuration needed. Thus, metaheuristics illustrate the potential to automate the production planning of RMS. However, the results indicate that the performance of the three meta-heuristics considering optimization quality and speed differs strongly

    Towards planning and control in cognitive factories - A generic model including learning effects and knowledge transfer across system entities

    Get PDF
    Cognitive abilities allow robots to learn and reason from their environment. The gained knowledge can then be incorporated into the robot’s actions which in turn affect the environment. Therefore, a cognitive robot is no longer a static system that performs actions based on a pre-defined set of rules but a complex entity that dynamically adjusts over time. With this, challenges arise for production systems that need to observe and ideally anticipate the cognitive robot’s behavior. Often, digital twins are employed to test and optimize production control systems. This paper presents a generic approach to characterize, model and simulate learning processes and formalized knowledge in hybrid production systems assuming different station types with learning effects. Thereby, quantitative and qualitative learning processes are mapped including knowledge sharing and transfer across entities. A modular and parameterizable design enables the adjustment to different use cases. Eventually, the model is instantiated as a digital twin of a real production system for product disassembly employing cognitive-autonomous robots among human operators and rigidly automated machines. The model shows great potential to be integrated into test beds for planning and control systems of cognitive factories
    • …
    corecore