52 research outputs found

    Silencing of anti-chondrogenic microRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo

    Get PDF
    There is a growing demand for the development of experimental strategies for efficient articular cartilage repair. Current tissue engineering-based regenerative strategies make use of human mesenchymal stromal cells (hMSCs). However, when implanted in a cartilage defect, control of hMSCs differentiation towards the chondrogenic lineage remains a significant challenge. We have recently demonstrated that silencing the anti-chondrogenic regulator microRNA-221 (miR-221) was highly effective in promoting in vitro chondrogenesis of monolayered hMSCs in the absence of the chondrogenic induction factor TGF-β. Here we investigated the feasibility of this approach first in conventional 3D pellet culture and then in an in vivo model. In pellet cultures, we observed that miR-221 silencing was sufficient to drive hMSCs towards chondrogenic differentiation in the absence of TGF-β. In vivo, the potential of miR-221 silenced hMSCs was investigated by first encapsulating the cells in alginate and then by filling a cartilage defect in an osteochondral biopsy. After implanting the biopsy subcutaneously in nude mice, we found that silencing of miR-221 strongly enhanced in vivo cartilage repair compared to the control conditions (untreated hMSCs or alginate-only). Notably, miR-221 silenced hMSCs generated in vivo a cartilaginous tissue with no sign of collagen type X deposition, a marker of undesired hypertrophic maturation. Altogether our data indicate that silencing miR-221 has a pro-chondrogenic role in vivo, opening new possibilities for the use of hMSCs in cartilage tissue engineering. This article is protected by copyright. All rights reserved

    Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis.

    Get PDF
    BACKGROUND: Here, we evaluated the hypothesis that CD8(+) T cell responses to caspase-cleaved antigens derived from effector T cells undergoing apoptosis, may contribute to multiple sclerosis (MS) immunopathology. METHODS: The percentage of autoreactive CD8(+) T effector cells specific for various apoptotic T cell-associated self-epitopes (apoptotic epitopes) were detected in the peripheral blood and cerebrospinal fluid (CSF) by both enzyme-linked immunospot and dextramers of class I molecules complexed with relevant apoptotic epitopes. Moreover, the capacity of dextramer(+) CD8(+) T cells to produce interferon (IFN)-Îł and/or interleukin (IL)-17 in response to the relevant apoptotic epitopes was evaluated by the intracellular cytokine staining. Cross-presentation assay of apoptotic T cells by dendritic cells was also evaluated ex vivo. RESULTS: We found that polyfunctional (IFN-Îł and/or IL-17 producing) autoreactive CD8(+) T cells specific for apoptotic epitopes were represented in MS patients with frequencies significantly higher than in healthy donors. These autoreactive CD8(+) T cells with a strong potential to produce IFN-Îł or IL-17 in response to the relevant apoptotic epitopes were significantly accumulated in the CSF from the same patients. In addition, the frequencies of these autoreactive CD8(+) T cells correlated with the disease disability. Cross-presentation assay revealed that caspase-cleaved cellular proteins are required to activate apoptotic epitope-specific CD8(+) T cells ex vivo. CONCLUSION: Taken together, these data indicate that apoptotic epitope-specific CD8(+) T cells with strong inflammatory potential are recruited at the level of the inflammatory site, where they may be involved in MS immunopathology through the production of high levels of inflammatory cytokines
    • …
    corecore