85 research outputs found

    ANALISI COSTO-EFFICACIA DELLA LOBECTOMIA VIDEOASSISTITA E NOSTRA ESPERIENZA

    Get PDF
    La Chirurgia Toracica Video-Assistita (Video-Assisted Thoracic Surgery-VATS) è stata senza dubbio il più rilevante progresso nella chirurgia toracica dell'ultimo mezzo secolo. I pazienti sono oramai ben consapevoli dei vantaggi delle tecniche mini-invasive in ogni campo della chirurgia. In tutto il mondo, sono sempre di più quei pazienti che, dovendo sottoporsi a interventi di chirurgia resettiva polmonare, richiedono operazioni in VATS. La chirurgia toracoscopica video-assitita ha apportato numerosi vantaggi, non solo per il chirurgo ma anche per il paziente: la riduzione del traumatismo sulla parete toracica, un recupero funzionale più precoce ed un miglior controllo del dolore post- operatorio e, ultimo ma non meno importante, un minor impatto estetico rispetto agli accessi chirurgici più estesi, quali la toracotomia o la sternotomia. Questo lavoro si propone di fornire una panoramica di come la lobectomia in VATS è evoluta nel corso degli ultimi due decenni, da tecnica di nicchia a pilastro fondamentale del bagaglio del chirurgo toracico, di descrivere i principali approcci chirurgici e di valutare l’impatto economico di questa tecnica, aspetto sempre più preponderante nell’attuale scenario economico europeo, analizzando e riportando l'esperienza del nostro centro

    Explorative search of distributed bio-data to answer complex biomedical questions

    Get PDF
    Background The huge amount of biomedical-molecular data increasingly produced is providing scientists with potentially valuable information. Yet, such data quantity makes difficult to find and extract those data that are most reliable and most related to the biomedical questions to be answered, which are increasingly complex and often involve many different biomedical-molecular aspects. Such questions can be addressed only by comprehensively searching and exploring different types of data, which frequently are ordered and provided by different data sources. Search Computing has been proposed for the management and integration of ranked results from heterogeneous search services. Here, we present its novel application to the explorative search of distributed biomedical-molecular data and the integration of the search results to answer complex biomedical questions. Results A set of available bioinformatics search services has been modelled and registered in the Search Computing framework, and a Bioinformatics Search Computing application (Bio-SeCo) using such services has been created and made publicly available at http://www.bioinformatics.deib.polimi.it/bio-seco/seco/. It offers an integrated environment which eases search, exploration and ranking-aware combination of heterogeneous data provided by the available registered services, and supplies global results that can support answering complex multi-topic biomedical questions. Conclusions By using Bio-SeCo, scientists can explore the very large and very heterogeneous biomedical-molecular data available. They can easily make different explorative search attempts, inspect obtained results, select the most appropriate, expand or refine them and move forward and backward in the construction of a global complex biomedical query on multiple distributed sources that could eventually find the most relevant results. Thus, it provides an extremely useful automated support for exploratory integrated bio search, which is fundamental for Life Science data driven knowledge discovery

    Mixing layers and coherent structures in vegetated aquatic flows

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2000.Includes bibliographical references (p. 115-120).by Marco Ghisalberti.S.M

    Momentum and scalar transport in vegetated shear flows

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2005.Includes bibliographical references (p. 113-119).Environmental aquatic flows are seldom free of vegetative influence. However, the impact of submerged vegetation on the hydrodynamics and mixing processes in aquatic flows remains poorly understood. In this thesis, I present the results of laboratory experiments that describe the salient hydrodynamic and transport features of vegetated flows. Flume experiments were conducted with dowels and buoyant polyethylene strips used to mimic rigid canopies and flexible seagrass meadows respectively. Although traditionally treated as rough boundary layers, vegetated shear flows more closely resemble mixing layers. Specifically, vertical velocity profiles contain an inflection point, yielding the flow unstable to a street of Kelvin-Helmholtz vortices. These vortices dominate transport through the shear layer, such that the rate of mixing of both mass and momentum is shown to scale upon their size and rotational speed. However, mass is mixed approximately twice as rapidly as momentum. The spread of a scalar plume is shown to be a function of the number of vortex cycles experienced by the plume, irrespective of the canopy characteristics or flow speed. In contrast to mixing layers, the vortices in a vegetated shear layer grow only to a finite size, often not penetrating fully to the bed. This separates the canopy into an upper zone with rapid, vortex-driven transport and a lower zone where mixing occurs on the much smaller scale of the stem wakes. Vortex growth is shown to cease once the shear production of vortical energy is balanced by the drag dissipation of that energy by the canopy.(cont.) The mixing length of momentum scales upon the final vortex size, allowing closure of a one-dimensional Reynolds-averaged Navier-Stokes model. Finally, canopy flexibility has a significant impact on the hydrodynamics of vegetated flows. The oscillating velocity field associated with the vortex street drives a coherent waving of the canopy, whose geometry changes rapidly over time. Using the height of a waving plant as an indicator of phase in the vortex cycle, synchronized velocity records show that the turbulence structure at the top of the canopy consists of a strong sweep at the front of the vortex, followed by a weak ejection at its rear.by Marco A. Ghisalberti.Ph.D

    Material residence time in marine canopies under wave-driven flows

    Get PDF
    © Copyright © 2020 Abdolahpour, Ghisalberti, McMahon and Lavery. Coastal canopies (e.g., seagrasses, coral reefs, and kelp forests) are vitally important ecosystems that provide a range of ecological services (e.g., oxygen production, sediment stabilization and trapping, and recycling of nutrients). The long-term health, productivity, and survival of these canopies rely heavily on the residence time of ecologically-significant materials in these environments. Recent studies have shown that submerged canopies induce a strong mean current over the canopy top, even in purely wave-dominated environments. Thus, in addition to vertical mixing, the horizontal flushing of materials (resulting from these canopy-induced currents) will dictate rates of water renewal and, therefore, residence time in wave-dominated flows over submerged canopies. Building on this recently-improved understanding, this paper provides (for the first time) a framework for estimation of material residence time (Tres) and its variation with core system parameters, including both canopy and wave characteristics. This is done through consideration of a Péclet number (Pe) which is the ratio of mixing to advective time scales. Prediction of residence time for a wide and realistic range of marine canopies (and a correspondingly wide range of Pe) reveals that while Tres decreases with wave height and increases with water depth, it has a complex relationship with canopy density and height. Importantly, residence time can vary from orders of seconds to hours, depending on wave and canopy properties. This has considerable ecological implications for marine canopies through the direct impact on a range of chemical and biogeochemical processes within the canopy. The framework presented here represents a critical step forward in being able to predict residence time in coastal canopies and test the interacting set of factors that influence the residence time in real, complex systems

    A joint velocity-intermittency analysis reveals similarity in the vertical structure of atmospheric and hydrospheric canopy turbulence

    Get PDF
    Turbulent fow through and over vegetation continues to draw signifcant research attention given its relevance to a plethora of applications in earth and environmental science. Canopy fows are characterized by three-dimensional coherent vortical motions not directly accessible from single-point measurements, which pose a challenge to formalizing links between vegetation structure and turbulent motion. A joint velocity-intermittency technique is applied to velocity data collected within and above aquatic vegetation in a hydraulic fume and above a forested canopy. The approach reveals behavior that provides greater insight into canopy fow dynamics than may be inferred from the vertical profles of mean velocity, turbulence intensity and Reynolds stresses, which are the quantities usually studied. There is a remarkable similarity in the structure of such fows between the forest canopy and the fume study despite large diferences in morphology and stem rigidity. In particular, these results determine an outer fow type arising above 1.5 canopy heights, while turbulent in-rushing events are most signifcant at the zero-plane displacement. The approach also implies ways in which improved models for canopy turbulence may be developed

    A Preliminary In Vitro Study on the Efficacy of High-Power Photodynamic Therapy (HLLT): Comparison between Pulsed Diode Lasers and Superpulsed Diode Lasers and Impact of Hydrogen Peroxide with Controlled Stabilization

    Get PDF
    Aim. In periodontology lasers have been suggested for the photodynamic therapy (PDT): such therapy can be defined as the inactivation of cells, microorganisms, or molecules induced by light and not by heat. The aim of this study was to evaluate results of PDT using a 980 nm diode laser (Wiser Doctor Smile, Lambda SPA, Italy) combined with hydrogen peroxide, comparing a pulsed diode laser (LI) activity to a high-frequency superpulsed diode laser (LII). Materials and Methods. Primary fibroblasts and keratinocytes cell lines, isolated from human dermis, were irradiated every 48 h for 10 days using LI and LII combined with SiOxyL+™ Solution (hydrogen peroxide (HP) stabilized with a glycerol phosphate complex). Two days after the last irradiation, the treated cultures were analyzed by flow cytofluorometry (FACS) and western blotting to quantify keratin 5 and keratin 8 with monoclonal antibodies reactive to cytokeratin 5 and cytokeratin 8. Antimicrobial activity was also evaluated. Results. Both experimental models show the superiority of LII against LI. In parallel, stabilized HP provided better results in the regeneration test in respect to common HP, while the biocidal activity remains comparable. Conclusion. The use of high-frequency lasers combined with stabilized hydrogen peroxide can provide optimal results for a substantial decrease of bacterial count combined with a maximal biostimulation induction of soft tissues and osteogenesis

    A One-Dimensional Model for Turbulent Mixing in the Benthic Biolayer of Stream and Coastal Sediments

    Get PDF
    In this paper, we develop and validate a rigorous modeling framework, based on Duhamel’s Theorem, for the unsteady one-dimensional vertical transport of a solute across a flat sediment-water interface (SWI) and through the benthic biolayer of a turbulent stream. The modeling framework is novel in capturing the two-way coupling between evolving solute concentrations above and below the SWI and in allowing for a depth-varying diffusivity. Three diffusivity profiles within the sediment (constant, exponentially decaying, and a hybrid model) are evaluated against an extensive set of previously published laboratory measurements of turbulent mass transfer across the SWI. The exponential diffusivity profile best represents experimental observations and its reference diffusivity scales with the permeability Reynolds Number, a dimensionless measure of turbulence at the SWI. The depth over which the turbulence-enhanced diffusivity decays is of the order of centimeters and comparable to the thickness of the benthic biolayer. Thus, turbulent mixing across the SWI may serve as a universal transport mechanism, supplying the nutrient and energy fluxes needed to sustain microbial growth, and nutrient processing, in the benthic biolayer of stream and coastal sediments
    • …
    corecore