10 research outputs found

    Development and Implementation of Image-based Algorithms for Measurement of Deformations in Material Testing

    Get PDF
    This paper presents the development and implementation of three image-based methods used to detect and measure the displacements of a vast number of points in the case of laboratory testing on construction materials. Starting from the needs of structural engineers, three ad hoc tools for crack measurement in fibre-reinforced specimens and 2D or 3D deformation analysis through digital images were implemented and tested. These tools make use of advanced image processing algorithms and can integrate or even substitute some traditional sensors employed today in most laboratories. In addition, the automation provided by the implemented software, the limited cost of the instruments and the possibility to operate with an indefinite number of points offer new and more extensive analysis in the field of material testing. Several comparisons with other traditional sensors widely adopted inside most laboratories were carried out in order to demonstrate the accuracy of the implemented software. Implementation details, simulations and real applications are reported and discussed in this paper

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays

    No full text
    Transparent conducting oxides (TCOs) are emerging as possible alternative constituent materials to replace noble metals such as silver and gold for low-loss plasmonic applications in the near-infrared (NIR) and mid-infrared (MIR) regimes. In particular, TCO-based nanostructures are extensively investigated for biospectroscopy exploiting their surface-enhanced infrared absorption (SEIRA). The latter enhances the absorption from vibrational and rotational modes of nearby biomolecules, making TCO nanostructures a promising candidate for IR sensing applications. Nevertheless, in order to produce inexpensive devices for lab-on-a-chip diagnostics, it would be favorable to achieve surface-enhanced infrared absorption with very simple microstructures not requiring nanosize control. In this work, we attempt to demonstrate a SEIRA effect with the least challenging fabrication, μm-scale instead of nm-scale, by tailoring both device design and charge density of the indium tin oxide (ITO) film. We show that microperiodic hole arrays in a ITO film are able to produce SEIRA via grating coupling. Such a study opens the way for innovative and disrupting biosensing devices
    corecore