188 research outputs found

    Sobre la ecología microbiana y el paradigma "Una Salud"

    Get PDF
    Dentro de las ciencias biológicas existen dos compuestos químicos que son comúnmente conocidos por todos, relacionados con historias fascinantes de la Ciencia y con importantes cambios en la historia de la Humanidad. Uno de ellos es el ácido desoxirribonucleico (ADN), sustancia que lleva en su estructura la información necesaria para el desarrollo de todos los seres vivos. El segundo de estos compuestos, en cambio, no puede ser definido en base a una estructura química particular, sino que involucra a muchas moléculas diferentes...Fil: Allegrini, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentin

    Sobre la ecología microbiana y el paradigma "Una Salud"

    Get PDF
    Dentro de las ciencias biológicas existen dos compuestos químicos que son comúnmente conocidos por todos, relacionados con historias fascinantes de la Ciencia y con importantes cambios en la historia de la Humanidad. Uno de ellos es el ácido desoxirribonucleico (ADN), sustancia que lleva en su estructura la información necesaria para el desarrollo de todos los seres vivos. El segundo de estos compuestos, en cambio, no puede ser definido en base a una estructura química particular, sino que involucra a muchas moléculas diferentes...Fil: Allegrini, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentin

    Acute glyphosate exposure does not condition the response of microbial communities to a dry-rewetting disturbance in a soil with long history of glyphosate-based herbicides

    Get PDF
    Dry-rewetting perturbations are natural disturbances in the edaphic environment and particularly in dryland cultivation areas. The interaction of this disturbance with glyphosate-based herbicides (GBHs) deserves special attention in the soil environment due to the intensification of agricultural practices and the acceleration of climate change with an intensified water cycle. The objective of this study was to assess the response of microbial communities in a soil with long history of GBHs to a secondary imposed perturbation (a single dry-rewetting event). A factorial microcosm study was conducted to evaluate the potential conditioning effect of an acute glyphosate exposure on the response to a following dry-rewetting event. A Respiratory Quotient (RQ) based on an ecologically relevant substrate (p-coumaric acid) and basal respiration was used as physiological indicator. Similarly, DNA-based analyses were considered, including quantitative PCR (qPCR) of functional sensitive microbial groups linked to cycles of carbon (Actinobacteria) and nitrogen (ammonia-oxidizing microorganisms), qPCR of total bacteria and denaturing gradient gel electrophoresis (DGGE) of ammonia-oxidizing bacteria (AOB). Significant effects of Herbicide and of Dry-rewetting perturbations were observed in the RQ and in the copy number of amoA gene of AOB, respectively. However, no significant interaction was observed between them when analyzing the physiological indicator and the copy number of the evaluated genes. PCR-DGGE results were not conclusive regarding a potential effect of Dry-rewetting × Herbicide interaction on AOB community structure, suggesting further analysis by deep sequencing of amoA gene. The results of this study indicate that the perturbation of an acute glyphosate exposure in a soil with long-history of this herbicide does not have a conditioning effect on the response to a subsequent dry-rewetting disturbance according to a physiological indicator or the quantified bacterial/archaeal genes. This is particularly relevant for the sustainability of soils in rainfed agriculture, where frequent exposure to GBHs along with intensification of hydrological cycles are expected to occur. Further studies considering multiple dry-rewetting disturbances and in different soil types should be conducted to simulate those conditions and to validate our results.Fil: Allegrini, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Gomez, Elena del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentin

    Quantum Measurement and Entropy Production

    Full text link
    We study the time evolution of a quantum system without classical counterpart, undergoing a process of entropy increase due to the environment influence. We show that if the environment-induced decoherence is interpreted in terms of wave-function collapses, a symbolic sequence can be generated. We prove that the Kolmogorov-Sinai entropy of this sequence coincides with rate of von Neumann entropy increase.Comment: 5 pages, 2 figure

    Suppression treatment differentially influences the microbial community and the occurrence of broad host range plasmids in the rhizosphere of the model cover crop Avena sativa L.

    Get PDF
    Cover crop suppression with glyphosate-based herbicides (GBHs) represents a common agricultural practice. The objective of this study was to compare rhizospheric microbial communities of A. sativa plants treated with a GBH relative to the mechanical suppression (mowing) in order to assess their differences and the potential implications for soil processes. Samples were obtained at 4, 10, 17 and 26 days post-suppression. Soil catabolic profiling and DNA-based methods were applied. At 26 days, higher respiration responses and functional diversity indices (Shannon index and catabolic evenness) were observed under glyphosate suppression and a neat separation of catabolic profiles was detected in multivariate analysis. Sarcosine and Tween 20 showed the highest contribution to this separation. Metabarcoding revealed a non-significant effect of suppression method on either alpha-diversity metrics or beta-diversity. Conversely, differences were detected in the relative abundance of specific bacterial taxa. Mesorhizobium sequences were detected in higher relative abundance in glyphosate-treated plants at the end of the experiment while the opposite trend was observed for Gaiella. Quantitative PCR of amoA gene from ammonia-oxidizing archaea showed a lower abundance under GBH suppression again at 26 days, while ammonia-oxidizing bacteria remained lower at all sampling times. Broad host range plasmids IncP-1β and IncP-1ε were exclusively detected in the rhizosphere of glyphosate-treated plants at 10 days and at 26 days, respectively. Overall, our study demonstrates differential effects of suppression methods on the abundance of specific bacterial taxa, on the physiology and mobile genetic elements of microbial communities while no differences were detected in taxonomic diversity.Fil: Allegrini, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Gomez, Elena del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Smalla, Kornelia. Julius Kühn-institut; AlemaniaFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentin

    Scaling and intermittency of brain events as a manifestation of consciousness

    Get PDF
    We discuss the critical brain hypothesis and its relationship with intermittent renewal processes displaying power-law decay in the distribution of waiting times between two consecutive renewal events. In particular, studies on complex systems in a "critical" condition show that macroscopic variables, integrating the activities of many individual functional units, undergo fluctuations with an intermittent serial structure characterized by avalanches with inverse-power-law (scale-free) distribution densities of sizes and inter-event times. This condition, which is denoted as "fractal intermittency", was found in the electroencephalograms of subjects observed during a resting state wake condition. It remained unsolved whether fractal intermittency correlates with the stream of consciousness or with a non-task-driven default mode activity, also present in non-conscious states, like deep sleep. After reviewing a method of scaling analysis of intermittent systems based of event-driven random walks, we show that during deep sleep fractal intermittency breaks down, and re-establishes during REM (Rapid Eye Movement) sleep, with essentially the same anomalous scaling of the pre-sleep wake condition. From the comparison of the pre-sleep wake, deep sleep and REM conditions we argue that the scaling features of intermittent brain events are related to the level of consciousness and, consequently, could be exploited as a possible indicator of consciousness in clinical applications

    High-Resolution Indicators of Soil Microbial Responses to N Fertilization and Cover Cropping in Corn Monoculture

    Get PDF
    Cover cropping (CC) is the most promising in-field practice to improve soil health and mitigate N losses from fertilizer use. Although the soil microbiota play essential roles in soil health, their response to CC has not been well characterized by bioindicators of high taxonomic resolution within typical agricultural systems. Our objective was to fill this knowledge gap with genus-level indicators for corn [Zea mays L.] monocultures with three N fertilizer rates (N0, N202, N269; kg N ha−1), after introducing a CC mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth.], using winter fallows (BF) as controls. A 3 × 2 split-plot arrangement of N rates and CC treatments was studied in a randomized complete block design with three replicates over two years. Bacterial and archaeal 16S rRNA and fungal ITS regions were sequenced with Illumina MiSeq system. Overall, our high-resolution bioindicators were able to represent specific functional or ecological shifts within the microbial community. The abundances of indicators representing acidophiles, nitrifiers, and denitrifiers increased with N fertilization, while those of heterotrophic nitrifiers, nitrite oxidizers, and complete denitrifiers increased with N0. Introducing CC decreased soil nitrate levels by up to 50% across N rates, and CC biomass increased by 73% with N fertilization. CC promoted indicators of diverse functions and niches, including N-fixers, nitrite reducers, and mycorrhizae, while only two N-cycling genera were associated with BF. Thus, CC can enhance the soil biodiversity of simplified cropping systems and reduce nitrate leaching, but might increase the risk of nitrous oxide emission without proper nutrient management. This primary information is the first of its kind in this system and provided valuable insights into the limits and potential of CC as a strategy to improve soil health.Fil: Kim, Nakian. University of Illinois at Urbana; Estados UnidosFil: Riggins, Chance W.. University of Illinois at Urbana; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Allegrini, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Rodriguez Zas, Sandra L.. University of Illinois at Urbana; Estados UnidosFil: Villamil, Maria Bonita. University of Illinois at Urbana; Estados Unido

    Microbial Signatures in Fertile Soils Under Long-Term N Management

    Get PDF
    Long-term reliance on inorganic N tomaintain and increase crop yields in overly simplified cropping systems in the U.S. Midwest region has led to soil acidification, potentially damaging biological N2 fixation and accelerating potential nitrification activities. Building on this published work, rRNA gene-based analysis via Illumina technology with QIIME 2.0 processing was used to characterize the changes in microbial communities associated with such responses. Amplicon sequence variants (ASVs) for each archaeal, bacterial, and fungal taxa were classified using the Ribosomal Database Project (RDP). Our goal was to identify bioindicators from microbes responsive to crop rotation and N fertilization rates following 34?35 years since the initiation of experiments. Research plots were established in 1981 with treatments of rotation [continuous corn (Zea mays L.) (CCC) and both the corn (Cs) and soybean (Glycine max L. Merr.) (Sc) phases of a corn-soybean rotation], and of N fertilization rates (0, 202, and 269 kg N/ha) arranged as a split-plot in a randomized complete block design with three replications. We identified a set of three archaea, and six fungal genera responding mainly to rotation; a set of three bacteria genera whose abundances were linked to N rates; and a set with the highest number of indicator genera from both bacteria (22) and fungal (12) taxa responded to N fertilizer additions only within the CCC system. Indicators associated with the N cycle were identified from each archaeal, bacterial, and fungal taxon, with a dominance of denitrifier over nitrifier- groups. These were represented by a nitrifier archaeon Nitrososphaera, and Woesearchaeota AR15, an anaerobic denitrifier. These archaea were identified as part of the signature for CCC environments, decreasing in abundance with rotated management. The opposite response was recorded for the fungus Plectosphaerella, a potential N2O producer, less abundant under continuous corn. N fertilization in CCC or CS systems decreased the abundance of the bacteria genera Variovorax and Steroidobacter, whereas Gp22 and Nitrosospira only showed this response under CCC. In this latter system, N fertilization resulted in increased abundances of the bacterial denitrifiers Gp1, Denitratisoma, Dokdonella, and Thermomonas, along with the fungus Hypocrea, a known N2O producer. The identified signatures could help future monitoring and comparison across cropping systems as we move toward more sustainable management practices. At the same time, this is needed primary information to understand the potential for managing the soil community composition to reduce nutrient losses to the environment.Fil: Villamil, Maria Bonita. University of Illinois at Urbana; Estados UnidosFil: Kim, Nakian. University of Illinois at Urbana; Estados UnidosFil: Riggins, Chance W.. University of Illinois at Urbana; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Allegrini, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Rodríguez Zas, Sandra L.. University of Illinois at Urbana; Estados Unido

    Simultaneous Determination of Squalene, α-Tocopherol and β-Carotene in Table Olives by Solid Phase Extraction and High-Performance Liquid Chromatography with Diode Array Detection

    Get PDF
    Olives, the fruit of the Olea europaea tree, are highly appreciated in olive oil and table olives (20 % of crops) not only for their flavor but also for their nutritional properties, especially for antioxidant compounds such as squalling (SQ), α-tocopherol (TH) and β-carotene (BC). This paper presents a new analytical method for simultaneously determining SQ, TH and BC in table olives by using solid phase extraction (SPE) and high performanceliquid chromatography with diode array detection (HPLCDAD), avoiding the classic saponification process. The correlation coefficients of calibration curves of the analyzed compounds ranged from 0.998 to 0.999, and the recoveries were in the range of 89.4–99.6 %. The validated method was used to analyze 30 table olive samples from Italy for their content of SQ (537–1,583 mg kg−1), TH (21–90 mg kg−1) and BC (0.4–2.6 mg kg−1). Finally, experiments with HPLC-MS were conducted to compare this novel method with the classic saponification procedure

    Decoherence, wave function collapses and non-ordinary statistical mechanics

    Full text link
    We consider a toy model of pointer interacting with a 1/2-spin system, whose σx\sigma_{x} variable is \emph{measured} by the environment, according to the prescription of decoherence theory. If the environment measuring the variable σx\sigma_{x} yields ordinary statistical mechanics, the pointer sensitive to the 1/2-spin system undergoes the same, exponential, relaxation regardless of whether real collapses or an entanglement with the environment, mimicking the effect of real collapses, occur. In the case of non-ordinary statistical mechanics the occurrence of real collapses make the pointer still relax exponentially in time, while the equivalent picture in terms of reduced density matrix generates an inverse power law relaxation
    corecore