54,277 research outputs found

    Cram\'er-Rao bound for time-continuous measurements in linear Gaussian quantum systems

    Full text link
    We describe a compact and reliable method to calculate the Fisher information for the estimation of a dynamical parameter in a continuously measured linear Gaussian quantum system. Unlike previous methods in the literature, which involve the numerical integration of a stochastic master equation for the corresponding density operator in a Hilbert space of infinite dimension, the formulas here derived depends only on the evolution of first and second moments of the quantum states, and thus can be easily evaluated without the need of any approximation. We also present some basic but physically meaningful examples where this result is exploited, calculating analytical and numerical bounds on the estimation of the squeezing parameter for a quantum parametric amplifier, and of a constant force acting on a mechanical oscillator in a standard optomechanical scenario.Comment: 9 pages, 2 figure

    Detecting Gaussian entanglement via extractable work

    Get PDF
    We show how the presence of entanglement in a bipartite Gaussian state can be detected by the amount of work extracted by a continuos variable Szilard-like device, where the bipartite state serves as the working medium of the engine. We provide an expression for the work extracted in such a process and specialize it to the case of Gaussian states. The extractable work provides a sufficient condition to witness entanglement in generic two-mode states, becoming also necessary for squeezed thermal states. We extend the protocol to tripartite Gaussian states, and show that the full structure of inseparability classes cannot be discriminated based on the extractable work. This suggests that bipartite entanglement is the fundamental resource underpinning work extraction.Comment: 12 pages, 8 figure

    Non-equilibrium readiness and accuracy of Gaussian Quantum Thermometers

    Full text link
    The dimensionality of a thermometer is key in the design of quantum thermometry schemes. In general, the phenomenology that is typical of finite-dimensional quantum thermometry does not apply to infinite dimensional ones. We analyse the dynamical and metrological features of non-equilibrium Gaussian Quantum Thermometers: on one hand, we highlight how quantum entanglement can enhance the readiness of composite Gaussian thermometers; on the other hand, we show that non-equilibrium conditions do not guarantee the best sensitivities in temperature estimation, thus suggesting the reassessment of the working principles of quantum thermometry

    Metrology with Unknown Detectors

    Full text link
    The best possible precision is one of the key figures in metrology, but this is established by the exact response of the detection apparatus, which is often unknown. There exist techniques for detector characterisation, that have been introduced in the context of quantum technologies, but apply as well for ordinary classical coherence; these techniques, though, rely on intense data processing. Here we show that one can make use of the simpler approach of data fitting patterns in order to obtain an estimate of the Cram\'er-Rao bound allowed by an unknown detector, and present applications in polarimetry. Further, we show how this formalism provide a useful calculation tool in an estimation problem involving a continuous-variable quantum state, i.e. a quantum harmonic oscillator

    Monitoring dispersive samples with single photons: the role of frequency correlations

    Get PDF
    The physics that governs quantum monitoring may involve other degrees of freedom than the ones initialised and controlled for probing. In this context we address the simultaneous estimation of phase and dephasing characterizing a dispersive medium, and we explore the role of frequency correlations within a photon pair generated via parametric down-conversion, when used as a probe for the medium. We derive the ultimate quantum limits on the estimation of the two parameters, by calculating the corresponding quantum Cram\'er-Rao bound; we then consider a feasible estimation scheme, based on the measurement of Stokes operators, and address its absolute performances in terms of the correlation parameters, and, more fundamentally, of the role played by correlations in the simultaneous achievability of the quantum Cram\'er-Rao bounds for each of the two parameters.Comment: to appear in Quantum Measurements and Quantum Metrolog

    Electrification in granular gases leads to constrained fractal growth

    Get PDF
    The empirical observation of aggregation of dielectric particles under the influence of electrostatic forces lies at the origin of the theory of electricity. The growth of clusters formed of small grains underpins a range of phenomena from the early stages of planetesimal formation to aerosols. However, the collective effects of Coulomb forces on the nonequilibrium dynamics and aggregation process in a granular gas -- a model representative of the above physical processes -- have so far evaded theoretical scrutiny. Here, we establish a hydrodynamic description of aggregating granular gases that exchange charges upon collisions and interact via the long-ranged Coulomb forces. We analytically derive the governing equations for the evolution of granular temperature, charge variance, and number density for homogeneous and quasi-monodisperse aggregation. We find that, once the aggregates are formed, the system obeys a physical constraint of nearly constant dimensionless ratio of characteristic electrostatic to kinetic energy B(t)≤1\mathcal{B}(t)\le 1. This constraint on the collective evolution of charged clusters is confirmed both by the theory and the detailed molecular dynamics simulations. The inhomogeneous aggregation of monomers and clusters in their mutual electrostatic field proceeds in a fractal manner. Our theoretical framework is extendable to more precise charge exchange mechanism, a current focus of extensive experimentation. Furthermore, it illustrates the collective role of long-ranged interactions in dissipative gases and can lead to novel designing principles in particulate systems
    • …
    corecore