67 research outputs found
Accurate Genetic Switch in Escherichia coli: Novel Mechanism of Regulation by Co-repressor
Understanding a biological module involves recognition of its structure and the dynamics of its principal components. In this report we present an analysis of the dynamics of the repression module within the regulation of the trp operon in Escherichia coli. We combine biochemical data for reaction rate constants for the trp repressor binding to trp operator and in vivo data of a number of tryptophan repressors (TrpRs) that bind to the operator. The model of repression presented in this report greatly differs from previous mathematical models. One, two or three TrpRs can bind to the operator and repress the transcription. Moreover, reaction rates for detachment of TrpRs from the operator strongly depend on tryptophan (Trp) concentration, since Trp can also bind to the repressor-operator complex and stabilize it. From the mathematical modeling and analysis of reaction rates and equilibrium constants emerges a high-quality, accurate and effective module of trp repression. This genetic switch responds accurately to fast consumption of Trp from the interior of a cell. It switches with minimal dispersion when the concentration of Trp drops below a thousand molecules per cell
Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
Recommended from our members
A combination treatment based on drug repurposing demonstrates mutation-agnostic efficacy in pre-clinical retinopathy models
Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6βrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration
Recommended from our members
Decoding human fetal liver haematopoiesis.
Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.We acknowledge funding from the Wellcome Human Cell Atlas Strategic Science Support (WT211276/Z/18/Z); M.H. is funded by Wellcome (WT107931/Z/15/Z), The Lister Institute for Preventive Medicine and NIHR and Newcastle-Biomedical Research Centre; S.A.T. is funded by Wellcome (WT206194), ERC Consolidator and EU MRG-Grammar awards and; S.B. is funded by Wellcome (WT110104/Z/15/Z) and St. Baldrick’s Foundation; E.L. is funded by a Wellcome Sir Henry Dale and Royal Society Fellowships, European Haematology Association, Wellcome and MRC to the Wellcome-MRC Cambridge Stem Cell Institute and BBSRC
Bimodal gene expression in noncooperative regulatory systems
Bimodality of gene expression, as a mechanism contributing to phenotypic diversity, enhances the survival of cells in a fluctuating environment. To date, the bimodal response of a gene regulatory system has been attributed to the cooperativity of transcription factor binding or to feedback loops. It has remained unclear whether noncooperative binding of transcription factors can give rise to bimodality in an open-loop system. We study a theoretical model of gene expression in a two-step cascade (a deterministically monostable system) in which the regulatory gene produces transcription factors that have a nonlinear effect on the activity of the target gene. We show that a unimodal distribution of transcription factors over the cell population can generate a bimodal steady-state output without cooperative transcription factor binding. We introduce a simple method of geometric construction that allows one to predict the onset of bimodality. The construction only involves the parameters of bursting of the regulatory gene and the dose–response curve of the target gene. Using this method, we show that the gene expression may switch between unimodal and bimodal as the concentration of inducers or corepressors is varied. These findings may explain the experimentally observed bimodal response of cascades consisting of a fluorescent protein reporter controlled by the tetracycline repressor. The geometric construction provides a useful tool for designing experiments and for interpretation of their results. Our findings may have important implications for understanding the strategies adopted by cell populations to survive in changing environments.</jats:p
Hill kinetics as a noise filter: the role of transcription factor autoregulation in gene cascades
Multiple genes under control of a single, self-regulating regulator can exhibit different (binary or graded) responses to the same signal.</p
Method for the analysis of contribution of sliding and hopping to a facilitated diffusion of DNA-binding protein: Application to<i>in vivo</i>data
Implications of macromolecular crowding for protein–protein association kinetics in the cytoplasm of living cells
- …
