25 research outputs found
The Role of Bromodomain and Extraterminal (BET) Proteins in Controlling the Phagocytic Activity of Microglia In Vitro: Relevance to Alzheimer’s Disease
The correct phagocytic activity of microglia is a prerequisite for maintaining homeostasis in the brain. In the analysis of mechanisms regulating microglial phagocytosis, we focused on the bromodomain and extraterminal domain (BET) proteins: Brd2, Brd3, and Brd4, the acetylation code readers that control gene expression in cooperation with transcription factors. We used pharmacological (JQ1) and genetic (siRNA) inhibition of BET proteins in murine microglial cell line BV2. Inhibition of BET proteins reduced the phagocytic activity of BV2, as determined by using a fluorescent microspheres-based assay and fluorescently labelled amyloid-beta peptides. Gene silencing experiments demonstrated that all brain-existing BET isoforms control phagocytosis in microglia. From a set of 84 phagocytosis-related genes, we have found the attenuation of the expression of 14: Siglec1, Sirpb1a, Cd36, Clec7a, Itgam, Tlr3, Fcgr1, Cd14, Marco, Pld1, Fcgr2b, Anxa1, Tnf, Nod1, upon BET inhibition. Further analysis of the mRNA level of other phagocytosis-related genes which were involved in the pathomechanism of Alzheimer’s disease demonstrated that JQ1 significantly reduced the expression of Cd33, Trem2, and Zyx. Our results indicate the important role of BET proteins in controlling microglial phagocytosis; therefore, targeting BET may be the efficient method of modulating microglial activity
The Role of Bromodomain and Extraterminal (BET) Proteins in Controlling the Phagocytic Activity of Microglia In Vitro: Relevance to Alzheimer’s Disease
The correct phagocytic activity of microglia is a prerequisite for maintaining homeostasis in the brain. In the analysis of mechanisms regulating microglial phagocytosis, we focused on the bromodomain and extraterminal domain (BET) proteins: Brd2, Brd3, and Brd4, the acetylation code readers that control gene expression in cooperation with transcription factors. We used pharmacological (JQ1) and genetic (siRNA) inhibition of BET proteins in murine microglial cell line BV2. Inhibition of BET proteins reduced the phagocytic activity of BV2, as determined by using a fluorescent microspheres-based assay and fluorescently labelled amyloid-beta peptides. Gene silencing experiments demonstrated that all brain-existing BET isoforms control phagocytosis in microglia. From a set of 84 phagocytosis-related genes, we have found the attenuation of the expression of 14: Siglec1, Sirpb1a, Cd36, Clec7a, Itgam, Tlr3, Fcgr1, Cd14, Marco, Pld1, Fcgr2b, Anxa1, Tnf, Nod1, upon BET inhibition. Further analysis of the mRNA level of other phagocytosis-related genes which were involved in the pathomechanism of Alzheimer’s disease demonstrated that JQ1 significantly reduced the expression of Cd33, Trem2, and Zyx. Our results indicate the important role of BET proteins in controlling microglial phagocytosis; therefore, targeting BET may be the efficient method of modulating microglial activity
The role of tungsten species in the transition of anodic nanopores to nanotubes formed on iron alloyed with tungsten
The effect of alloying of sputter-deposited Fe with 9 at.% tungsten on the growth of nanoporous anodic oxide was studied in ethylene glycol electrolyte containing 0.1 mol dm(-3) ammonium fluoride and 1.5 mol dm(-)(3) water. The classic nanoporous anodic film (Al2O3-like) was developed on pure Fe while the transition of nanopores to nanotubes (TiO2-like) was observed for anodizing of Fe-W alloy. The pores/ nanotubes having average diameter 50-110 nm and 30-60 nm on pure Fe and Fe-W alloy anodized at voltage 40-60 V, respectively. Both nanoporous/nanotubular anodic films grow in line with the field assisted flow model with a few fundamental details: i) transition of nanopores to nanotubes is observed upon anodizing of Fe-W alloy, ii) significant reduction of the cell size (nanotube diameter) is obtained on Fe-W alloy, iii) relatively thick layer is produced at Fe-W alloy/oxide interface. The primary reason of this transition to nanotubes as well as chemical changes is discussed in view of effective modification of the cell boundary region with tungsten species, probably WF6 compound, upon growth of anodic film under influence of high electric field strength. The possible reason of developing the space in between nanotubes is faster kinetics of WF6 reaction with water over the presence of low solubility FeFx species. Alloying of iron is one of the effective ways to modify the nanostructure of the anodic film on iron. (C) 2019 Elsevier Ltd. All rights reserved
Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity
Abstract Background Cyclin-dependent kinase 5 (Cdk5) belongs to the family of proline-directed serine/threonine kinases and plays a critical role in neuronal differentiation, migration, synaptogenesis, plasticity, neurotransmission and apoptosis. The deregulation of Cdk5 activity was observed in post mortem analysis of brain tissue of Alzheimer’s disease (AD) patients, suggesting the involvement of Cdk5 in the pathomechanism of this neurodegenerative disease. However, our recent study demonstrated the important function of Cdk5 in regulating inflammatory reaction. Methods Since the role of Cdk5 in regulation of inflammatory signalling in AD is unknown, we investigated the involvement of Cdk5 in neuroinflammation induced by single intracerebroventricular (icv) injection of amyloid beta protein (Aβ) oligomers in mouse. The brain tissue was analysed up to 35 days post injection. Roscovitine (intraperitoneal administration) was used as a potent Cdk5 inhibitor. The experiments were also performed on human neuroblastoma SH-SY5Y as well as mouse BV2 cell lines treated with exogenous oligomeric Aβ. Results Our results demonstrated that single injection of Aβ oligomers induces long-lasting activation of microglia and astrocytes in the hippocampus. We observed also profound, early inflammatory response in the mice hippocampus, leading to the significant elevation of pro-inflammatory cytokines expression (e.g. TNF-α, IL-1β, IL-6). Moreover, Aβ oligomers elevated the formation of truncated protein p25 in mouse hippocampus and induced overactivation of Cdk5 in neuronal cells. Importantly, administration of roscovitine reduced the inflammatory processes evoked by Aβ in the hippocampus, leading to the significant decrease of cytokines level. Conclusions These studies clearly show the involvement of Cdk5 in modulation of brain inflammatory response induced by Aβ and may indicate this kinase as a novel target for pharmacological intervention in AD
Spectroscopic characterization and photoactivity of SiOx-based films electrochemically grown on Cu surfaces
Electrodeposited SiOx electrodes were shown to be photoactive and exhibit n- and p-type effects for electrodes placed in aqueous and organic solutions, respectively. As seen by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron (XPS) spectroscopy, the mechanism of the electrodeposition included reactions with the used electrolyte as well as with traces of water as sources of oxygen and hydrogen. The lowest band gap energy (E-g) of the films of approximately 1.6 eV was observed for the film electrodeposited at -2.5 V in comparison to 1.9 eV for the films obtained at -2.25 and -2.75 V. The depth profiles of Si and O in the films were registered by XPS, secondary ion mass spectrometry (SIMS), and glow discharge optical emission spectroscopy (GD-OES), which showed that Si and O were relatively uniformly distributed across the entire layer of the film. The n-type photoactivity was associated with the evolution of oxygen from the aqueous solution, and the p-type was attributed to the reductive deterioration of the amorphous SiOx deposit and simultaneous photodecomposition of the electrolyte
Graphitic Carbon Nitride Doped with the s‑Block Metals: Adsorbent for the Removal of Methyl Blue and Copper(II) Ions
The
synthesis of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) doped with s-block metals is described. The materials were
synthesized via thermal polycondensation of cyanamide and the appropriate
metal chloride. The inclusion of the metal precursor strongly influenced
the surface chemistry features as well as the textural, morphological,
and structural properties of the g-C<sub>3</sub>N<sub>4</sub>. The
doping of g-C<sub>3</sub>N<sub>4</sub>with s-block metals markedly
enhanced its adsorption performance, which was studied during the
removal of two model solutes (methyl blue and copper ions) from aqueous
solutions. The maximum adsorption capacity for the organic dye was
increased by 680 times after the doping process. The uptake of copper(II)
increased ca. 30 times for the doped g-C<sub>3</sub>N<sub>4</sub>.
The improvement of the adsorption performance is discussed in terms
of the surface chemistry and textural features
Additional file 1: Figure S1. of Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity
The effect of Aβ administration on immunoreactivity of proteins. Aβ (0.5 nmol) was injected intracerebroventricularly. Immunoreactivity of analysed proteins was examined by SDS-PAGE and Western blotting 3 h after injection of Aβ. Results of densitometric analysis were normalised to immunoreactivity of GAPDH, as a loading control. The results are presented as the mean ± SEM from four independent experiments (n = 4). (TIFF 499 kb
Nanocomposite Membrane Scaffolds for Cell Function Maintaining for Biomedical Purposes
Nanocomposite multilayered membrane coatings have been widely used experimentally to enhance biomedical materials surfaces. By the selection of reliable components, such systems are functionalized to be adjusted to specific purposes. As metal nanoparticles can reduce bacterial cell adhesion, the idea of using gold and silver nanoparticles of unique antimicrobial properties within membrane structure is outstandingly interesting considering dressings facilitating wound healing. The study was aimed to explore the interface between eukaryotic cells and wound dressing materials containing various nanoelements. The proposed systems are based on polyethyleneimine and hydroxyapatite thin layers incorporating metallic nanoparticles (silver or gold). To examine the structure of designed materials scanning electron and transmission electron microscopies were applied. Moreover, Fourier-transform infrared and energy-dispersive X-ray spectroscopies were used. Additionally, water contact angles of the designed membranes and their transport properties were estimated. The functioning of human fibroblasts was examined via flow cytometry to assess the biocompatibility of developed shells in the aspect of their cytotoxicity. The results indicated that designed nanocomposite membrane scaffolds support eukaryotic cells’ functioning, confirming that the elaborated systems might be recommended as wound healing materials