52 research outputs found

    Thymocyte regulatory variant alters transcription factor binding and protects from type 1 diabetes in infants

    Get PDF
    We recently mapped a genetic susceptibility locus on chromosome 6q22.33 for type 1 diabetes (T1D) diagnosed below the age of 7 years between the PTPRK and thymocyte-selection-associated (THEMIS) genes. As the thymus plays a central role in shaping the T cell repertoire, we aimed to identify the most likely causal genetic factors behind this association using thymocyte genomic data. In four thymocyte populations, we identified 253 DNA sequence motifs underlying histone modifications. The G insertion allele of rs138300818, associated with protection from diabetes, created thymocyte motifs for multiple histone modifications and thymocyte types. In a parallel approach to identifying variants that alter transcription factor binding motifs, the same variant disrupted a predicted motif for Rfx7, which is abundantly expressed in the thymus. Chromatin state and RNA sequencing data suggested strong transcription overlapping rs138300818 in fetal thymus, while expression quantitative trait locus and chromatin conformation data associate the insertion with lower THEMIS expression. Extending the analysis to other T1D loci further highlighted rs66733041 affecting the GATA3 transcription factor binding in the AFF3 locus. Taken together, our results support a role for thymic THEMIS gene expression and the rs138300818 variant in promoting the development of early-onset T1D.Peer reviewe

    Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs.

    Get PDF
    Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.Medical Research Council, UK; EMBO Fellowship [ALTF 701-2013 to L.V.H.]; PhD fellowship from the Foundation for Science and Technology, Portugal through the GABBA Program, University of Porto (to P.R.G.); Experiments undertaken in the J-PC laboratory were supported by ANR Investissement d’Avenir [ANR-IIINSB-0014] and AFM [18566].This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/nar/gkw67

    Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing.

    Get PDF
    This work was supported by Wellcome Trust Grant 096388, JDRF Grant 9-2011-253, the National Institute for Health Research Cambridge Biomedical Research Centre (BRC) and Award P01AI039671 (to LSW. and JAT.) from the National Institute of Allergy and Infectious Diseases (NIAID). CW is supported by the Wellcome Trust (089989). The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of NIAID or the National Institutes of Health. The Cambridge Institute for Medical Research is in receipt of Wellcome Trust Strategic Award 100140. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers. We thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. We thank Fay Rodger and Ruth Littleboy for running the Illumina MiSeq in the Molecular Genetics Laboratories, Addenbrooke's Hospital, Cambridge. This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub. In particular, we wish to thank Anna Petrunkina Harrison, Simon McCallum, Christopher Bowman, Natalia Savinykh, Esther Perez and Jelena Markovic Djuric for their advice and support in cell sorting. We also thank Helen Stevens, Pamela Clarke, Gillian Coleman, Sarah Dawson, Jennifer Denesha, Simon Duley, Meeta Maisuria-Armer and Trupti Mistry for acquisition and preparation of samples.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/eji.20154564

    Protocol of the adaptive study of IL-2 dose frequency on regulatory T cells in type 1 diabetes (DILfrequency): a mechanistic, non-randomised, repeat dose, open-label, response-adaptive study.

    Get PDF
    INTRODUCTION: Type 1 diabetes (T1D) is caused by autoimmune destruction of the insulin-producing β cells in the pancreatic islets, leading to insulinopenia and hyperglycaemia. Genetic analyses indicate that alterations of the interleukin-2 (IL-2) pathway mediating immune activation and tolerance predispose to T1D, specifically the polymorphic expression of the IL-2 receptor-α chain (CD25) on T lymphocytes. Replacement of physiological doses of IL-2 could restore self-tolerance and prevent further autoimmunity by enhancing the function of CD4(+) T regulatory cells (Tregs) to limit the activation of auto reactive T effector cells (Teffs). In this experimental medicine study, we use an adaptive trial design to determine the optimal dosing regimen for IL-2 to improve Treg function while limiting activation of Teffs in participants with T1D. METHODS AND ANALYSIS: The Adaptive study of IL-2 dose frequency on Tregs in type 1 diabetes(DILfrequency) is a mechanistic, non-randomised, repeat dose open-label, response-adaptive study of 36 participants with T1D. The objective is to establish the optimal dose and frequency of ultra-low dose IL-2: to increase Treg frequency within the physiological range, to increase CD25 expression on Tregs, without increasing CD4(+) Teffs. DILfrequency has an initial learning phase where 12 participants are allocated to six different doses and frequencies followed by an interim statistical analysis. After analysis of the learning phase, the Dose and Frequency Committee will select the optimal targets for Treg frequency, Treg CD25 expression and Teff frequency. Three groups of eight participants will be treated consecutively in the confirming phase. Each dose and frequency selected will be based on statistical analysis of all data collected from the previous groups. ETHICS: Ethical approval for DILfrequency was granted on 12 August 2014. RESULTS: The results of this study will be reported, through peer-reviewed journals, conference presentations and an internal organisational report. TRIAL REGISTRATION NUMBERS: NCT02265809, ISRCTN40319192, CRN17571.This work is funded by The Sir Jules Thorn Award for Biomedical Research 2013 (13/JTA), the JDRF (9-2011-253), the Wellcome Trust (091157) and the National Institute for Health Research Cambridge Biomedical Research Centre. The Cambridge Institute for Medical Research is in receipt of a Wellcome Trust Strategic Award (100140). AM was supported by the Medical Research Council [grant number G0800860] and the National Institute for Health Research Cambridge Biomedical Research Centre.This is the final version of the article. It was first available from BMJ via http://dx.doi.org/10.1136/bmjopen-2015-00979

    Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs

    Get PDF
    Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases

    Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells.

    Get PDF
    Regulatory T cells (Tregs) expressing FOXP3 are essential for the maintenance of self-tolerance and are deficient in many common autoimmune diseases. Immune tolerance is maintained in part by IL-2 and deficiencies in the IL-2 pathway cause reduced Treg function and an increased risk of autoimmunity. Recent studies expanding Tregs in vivo with low-dose IL-2 achieved major clinical successes highlighting the potential to optimize this pleiotropic cytokine for inflammatory and autoimmune disease indications. Here we compare the clinically approved IL-2 molecule, Proleukin, with two engineered IL-2 molecules with long half-lives owing to their fusion in monovalent and bivalent stoichiometry to a non-FcRγ binding human IgG1. Using nonhuman primates, we demonstrate that single ultra-low doses of IL-2 fusion proteins induce a prolonged state of in vivo activation that increases Tregs for an extended period of time similar to multiple-dose Proleukin. One of the common pleiotropic effects of high dose IL-2 treatment, eosinophilia, is eliminated at doses of the IL-2 fusion proteins that greatly expand Tregs. The long half-lives of the IL-2 fusion proteins facilitated a detailed characterization of an IL-2 dose response driving Treg expansion that correlates with increasingly sustained, suprathreshold pSTAT5a induction and subsequent sustained increases in the expression of CD25, FOXP3 and Ki-67 with retention of Treg-specific epigenetic signatures at FOXP3 and CTLA4.This work was supported by Wellcome Trust Grant 091157, JDRF International Grant 9-2011-253, the National Institute for Health Research Cambridge Biomedical Research Centre, and the Medical Research Council Cusrow Wadia Fund. The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). U.M.N. was the recipient of a Hoffmann-La Roche postdoctoral fellowship.This is thefinal version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S089684111400146

    IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients.

    Get PDF
    AIMS/HYPOTHESIS: Type 1 diabetes results from the autoimmune destruction of insulin-secreting pancreatic beta cells by T cells. Despite the established role of T cells in the pathogenesis of the disease, to date, with the exception of the identification of islet-specific T effector (Teff) cells, studies have mostly failed to identify reproducible alterations in the frequency or function of T cell subsets in peripheral blood from patients with type 1 diabetes. METHODS: We assessed the production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 in peripheral blood mononuclear cells from 69 patients with type 1 diabetes and 61 healthy donors. In an additional cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. IL-21 and IL-17 production was also measured in peripheral blood mononuclear cells (PBMCs) from a subset of 46 of the 62 donors immunophenotyped for Tfh. RESULTS: We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). Consistent with this finding, we found a 14.9% increase in circulating Tfh cells in the patients (95% CI 2.9, 26.9; p = 0.016). CONCLUSIONS/INTERPRETATION: These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.This work was supported by the JDRF UK Centre for Diabetes - Genes, Autoimmunity and Prevention (D-GAP; 4-2007-1003) in collaboration with M. Peakman and T. Tree at King’s College London, the JDRF, the Wellcome Trust (WT; WT061858/091157 and 083650/Z/07/Z) and the National Institute for Health Research Cambridge Biomedical Research Centre (CBRC). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). RCF is funded by a JDRF post-doctoral fellowship (3-2011-374). CW is funded by the Wellcome Trust (088998). The funding organisations had no involvement with the design and conduct of the study; collection,management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.This is the final published version. It first appeared at http://link.springer.com/article/10.1007%2Fs00125-015-3509-8

    Widespread seasonal gene expression reveals annual differences in human immunity and physiology.

    Get PDF
    Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.The Gambian study providing data for analysis was supported by core funding MC-A760-5QX00 to the International Nutrition Group by the UK Medical Research Council (MRC) and the UK Department for the International Development (DFID) under the MRC/DFID Concordat agreement. This work was supported by the JDRF UK Centre for Diabetes-Genes, Autoimmunity and Prevention (D-GAP; 4-2007-1003), the JDRF (9-2011-253), the Wellcome Trust (WT061858/091157), the National Institute for Health Research Cambridge Biomedical Research Centre (CBRC) and the Medical Research Council (MRC) Cusrow Wadia Fund. The research leading to these results has received funding from the European Union’s 7th Framework Programme (FP7/2007–2013) under grant agreement no.241447 (NAIMIT). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (WT100140). X.C.D. was a University of Cambridge/Wellcome Trust Infection and Immunity PhD student. R.C.F. is funded by a JDRF post-doctoral fellowship (3-2011-374). C.W. and H.G are funded by the Wellcome Trust (WT089989). The BABYDIET study was supported by grants from the Deutsche Forschungsgemeinschaft (DFG ZI-310/14-1 to-4), the JDRF (JDRF 17-2012-16 and 1-2006-665) and the German Center for Diabetes Research (DZD e.V.). E.B. is supported by the DFG Research Center and Cluster of Excellence—Center for Regenerative Therapies Dresden (FZ 111).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150512/ncomms8000/full/ncomms8000.html

    Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping.

    Get PDF
    Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.We acknowledge use of DNA from The UK Blood Services collection of Common Controls (UKBS-CC collection), which is funded by the Wellcome Trust grant 076113/C/04/Z and by the USA National Institute for Health Research program grant to the National Health Service Blood and Transplant (RP-PG-0310-1002). We acknowledge the use of DNA from the British 1958 Birth Cohort collection, which is funded by the UK Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. This research utilized resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Allergy and Infectious Diseases, the National Human Genome Research Institute, the National Institute of Child Health and Human Development and the JDRF and is supported by the USA National Institutes of Health grant U01-DK062418. The JDRF/Wellcome Trust Diabetes and Inflammation Laboratory is funded by the JDRF (9-2011-253), the Wellcome Trust (091157) and the National Institute for Health Research Cambridge Biomedical Centre. The research leading to these results has received funding from the European Union's 7th Framework Programme (FP7/2007-2013) under grant agreement no.241447 (NAIMIT). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). CW is supported by the Wellcome Trust (089989). We acknowledge the National Institute for Health Research Cambridge Biomedical Research Centre for funding.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pgen.100527

    Reduced Expression of IFIH1 Is Protective for Type 1 Diabetes

    Get PDF
    IFIH1 (interferon induced with helicase C domain 1), also known as MDA5 (melanoma differentiation-associated protein 5), is one of a family of intracellular proteins known to recognise viral RNA and mediate the innate immune response. IFIH1 is causal in type 1 diabetes based on the protective associations of four rare variants, where the derived alleles are predicted to reduce gene expression or function. Originally, however, T1D protection was mapped to the common IFIH1 nsSNP, rs1990760 or Thr946Ala. This common amino acid substitution does not cause a loss of function and evidence suggests the protective allele, Ala946, may mark a haplotype with reduced expression of IFIH1 in line with the protection conferred by the four rare loss of function alleles. We have performed allele specific expression analysis that supports this hypothesis: the T1D protective haplotype correlates with reduced IFIH1 transcription in interferon-β stimulated peripheral blood mononuclear cells (overall p = 0.012). In addition, we have used multiflow cytometry analysis and quantitative PCR assays to prove reduced expression of IFIH1 in individuals heterozygous for three of the T1D-associated rare alleles: a premature stop codon, rs35744605 (Glu627X) and predicted splice variants, rs35337543 (IVS8+1) and rs35732034 (IVS14+1). We also show that the nsSNP, Ile923V, does not alter pre-mRNA levels of IFIH1. These results confirm and extend the new autoimmune disease pathway of reduced IFIH1 expression and protein function protecting from T1D
    • …
    corecore