1,807 research outputs found

    Electroweak Radiative Corrections To Polarized M{\o}ller Scattering Asymmetries

    Get PDF
    One loop electroweak radiative corrections to left-right parity violating M{\o}ller scattering (eeeee^-e^-\to e^-e^-) asymmetries are presented. They reduce the standard model (tree level) prediction by 40±3\pm 3 \% where the main shift and uncertainty stem from hadronic vacuum polarization loops. A similar reduction also occurs for the electron-electron atomic parity violating interaction. That effect can be attributed to an increase of sin2θW(q2)\sin^2\theta_W(q^2) by 3%3\% in running from q2=mZ2q^2=m_Z^2 to 0. The sensitivity of the asymmetry to ``new physics'' is also discussed.Comment: 14 pages, Revtex, postscript file including figures is available at ftp://ttpux2.physik.uni-karlsruhe.de/ttp95-14/ttp95-14.ps or via WWW at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints/ (129.13.102.139

    Hearing aids re-habilitation in aged people

    Get PDF

    Radiative Tail in πe2\pi_{e2} Decay and Some Comments on μe\mu-e Universality

    Full text link
    The result of lowest-order perturbation theory calculations of the photon and positron spectra in radiative pion(e2) decay are generalized to all orders of perturbation theory using the structure-function method. An additional source of radiative corrections to the ratio of the positron and muon channels of pion decay, due to emission of virtual and real photons and pairs, is considered. It depends on details of the detection of the final particles and is large enough to be taken into account in theoretical estimates with a level of accuracy of 0.1%.Comment: 5 pages, LaTeX, some misprints are corrected, submitted to Pisma Zh. Eksp. Teor. Fi

    "Dark" Z implications for Parity Violation, Rare Meson Decays, and Higgs Physics

    Full text link
    General consequences of mass mixing between the ordinary Z boson and a relatively light Z_d boson, the "dark" Z, arising from a U(1)_d gauge symmetry, associated with a hidden sector such as dark matter, are examined. New effects beyond kinetic mixing are emphasized. Z-Z_d mixing introduces a new source of low energy parity violation well explored by possible future atomic parity violation and planned polarized electron scattering experiments. Rare K (B) meson decays into pi (K) l^+ l^- (l = e, mu) and pi (K) nu anti-nu are found to already place tight constraints on the size of Z-Z_d mixing. Those sensitivities can be further improved with future dedicated searches at K and B factories as well as binned studies of existing data. Z-Z_d mixing can also lead to the Higgs decay H -> Z Z_d, followed by Z -> l_1^+ l_1^- and Z_d -> l_2^+ l_2^- or "missing energy", providing a potential hidden sector discovery channel at the LHC. An illustrative realization of these effects in a 2 Higgs doublet model is presented.Comment: Version to appear in PR

    Light Threshold Effects in Supersymmetric Grand Unified Theories

    Full text link
    Supersymmetric Grand Unified Theories have a rich spectrum of particles barely heavier than the intermediate vector bosons. As their non-supersymmetric counterparts, they lead to many relations among low energy observables. But the precise form of the predictions is modified by the extended spectrum. If the masses of these new particles are comparable to MZM_Z, the standard computation of their effect becomes inaccurate. We present a detail discussion of the correct procedure, and carry out the relevant computations to one loop order. The procedure we propose has the advantage over other existing methods that two-loop running of gauge couplings can be incorporated readily and consistently. Attention is paid to the special treatment that the top and Higgs particles must receive. The size of the effect is explored for a range of parameters in the minimal supersymmetric SU(5)SU(5) grand-unified theory with radiative breaking. It is found that the naive (leading-log) computation can be fairly inaccurate.Comment: 33 pages (13 revised figures available by anonymous ftp), two new sections, some improvements, SSCL--Preprint--496 and WIS--93/61/JULY--P

    Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    Full text link
    A previous calculation of electroweak O(alpha) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from \Delta\alpha and \Delta\rho as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O(alpha)-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS like. As a technical byproduct, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by non-universal two-loop effects and is of the order 0.0003 when translated into a shift in sin^2\theta_W=1-MW^2/MZ^2. The O(alpha) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.Comment: 25 pages, latex, 8 postscript figure

    K_L \ra \mu^\pm e^\mp \nu \overline{\nu} as background to K_L \ra \mu^\pm e^\mp

    Full text link
    We consider the process K_L \ra \mu^\pm e^\mp \nu \overline{\nu} at next to leading order in chiral perturbation theory. This process occurs in the standard model at second order in the weak interaction and constitutes a potential background in searches for new physics through the modes K_L \ra \mu^\pm e^\mp. We find that the same cut, Mμe>489M_{\mu e}>489~MeV, used to remove the sequential decays K_{l3}\ra \pi_{l2} pushes the B(K_L \ra \mu^\pm e^\mp \nu \overline{\nu}) to the 102310^{-23} level, effectively removing it as a background.Comment: 8 pages, LaTeX, 1 figure appended as postscript file after \end{document}. Fermilab-Pub-93/024-

    K^L_{mu3} decay: A first evidence of Right-Handed Quark Currents ?

    Full text link
    The experimental results published by KTeV and the preliminary results from NA48 concerning the slope of the Kpi scalar form factor suggest a significant discrepancy with the prediction of the Callan-Treiman low energy theorem once interpreted within the Standard Model. In this talk, we will show how this discrepancy could be explained as a first evidence of the direct coupling of right-handed quarks to W as suggested by certain type of effective electroweak theories.Comment: 4 pages, 2 figures. Talk given at the 7th International Conference on Hyperons, Charm And Beauty Hadrons (BEACH 2006), 2-8 July 2006, Lancaster, U

    Tau Polarimetry with Inclusive Decays

    Full text link
    The spin asymmetry parameter AτA_\tau characterizing the angular distribution of the total hadron momentum in the decay of a polarized tau can be calculated rigorously using perturbative QCD and the operator product expansion. Perturbative QCD corrections to the free quark result Aτ=1/3A_\tau = 1/3 can be expressed as a power series in αs(Mτ)\alpha_s(M_\tau) and nonperturbative QCD corrections can be expanded systematically in powers of 1/Mτ21/M_\tau^2. The QCD prediction is Aτ=0.41±0.02A_\tau = 0.41 \pm 0.02. In the decay of a high energy tau into hadrons, the value of the hadronic energy distribution dRτ/dzdR_\tau/dz evaluated at the maximum hadronic energy fraction z=1z = 1 can also be calculated rigorously from QCD.Comment: LateX, 11 pages, no figures, NUHEP-TH-93-
    corecore