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Abstract

One loop electroweak radiative corrections to left-right parity violating Møller

scattering (e−e− → e−e−) asymmetries are presented. They reduce the stan-

dard model (tree level) prediction by 40±3 % where the main shift and un-

certainty stem from hadronic vacuum polarization loops. A similar reduction

also occurs for the electron-electron atomic parity violating interaction. That

effect can be attributed to an increase of sin2 θW (q2) by 3% in running from

q2 = m2
Z to 0. The sensitivity of the asymmetry to “new physics” is also

discussed.

I. INTRODUCTION

The chiral structure of the standard SU(2)L×U(1)Y model implies a predictable degree
of parity violation in all physical processes, ranging from low energy atomic phenomena
to high energy Z boson production asymmetries. Precision experimental studies of those
predictions test the standard model at the tree and quantum loop level. A deviation from
expectations would point to “new physics”.

One interesting class of parity violation measurements involves the scattering of longi-
tudinally polarized (left or right-handed) electrons on an unpolarized target. The left-right
scattering asymmetry

ALR ≡
dσL − dσR
dσL + dσR

(1)
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is manifestly parity violating and measures the interference between electromagnetic and
weak neutral current amplitudes. A classic example is the now famous SLAC asymmetry
measurement for deep-inelastic polarized e − D scattering [1]. That study confirmed the
standard model’s weak neutral current structure and provided a good determination of the
weak mixing angle, sin2 θW (to about ±10%). One could envision pushing such asymmetry
measurements to much higher levels of precision. Indeed, a later measurement of elastic
polarized e−C scattering [2] indicated that systematic uncertainties as small as 10−8 were
achievable in asymmetry experiments.

Given the possibility of very high precision asymmetry measurements using present day
facilities and technology, it is interesting to investigate what one can learn from such experi-
ments. In that spirit, we consider here the case of polarized Møller scattering e−e− → e−e−.
Our primary focus will be on the use of a very intense highly polarized (Pe > 0.8) electron
beam in fixed target unpolarized electron scattering.

The tree level prediction for that asymmetry was examined a number of years ago [3].
The interference between electromagnetic and weak neutral current amplitudes in fig. 1 gives
rise to the standard model prediction

ALR(e−e− → e−e−)

=
GµQ

2

√
2πα

1− y

1 + y4 + (1− y)4

(
1− 4 sin2 θW

)
(2)

where

Gµ = 1.16639(1) × 10−5 GeV−2

α−1 = 137.036

Q2 = −q2 ≡ y(p′ + p)2 = y(2m2
e + 2meEbeam)fixed target

q2 = (p′ − p)2 (3)

and the weak mixing angle is roughly sin2 θW ≈ 0.23. In that expression, terms of order
me/Ebeam and me/Q have been dropped, since we assume m2

e � Q2 � m2
Z.

For fixed target experiments, the asymmetry in (2) is very small because of the tiny
GµQ

2 factor and (to a lesser extent) the 1 − 4 sin2 θW suppression factor. Employing a Z
pole value, sin2 θW = 0.2314, and choosing y = 1/2 where the asymmetry is maximal, one
finds (for 100% beam polarization, Pe = 1) the tree level prediction

ALR(e−e−→ e−e−) ≈ 6× 10−9(Ebeam/1GeV) (4)

That small an asymmetry may at first sight appear impossible to measure. An experimental
group has, however, taken up the challenge and studied the possibility of such a measurement
[4]. They envision using the SLAC 50 GeV beam (such that Atree

LR ≈ 3×10−7) and operating
with very high, well monitored polarization |Pe| >∼ 0.8. They estimate that using a thick
hydrogen target, a statistical precision of ±10−8 in ALR is achievable in a 3 month run.
That corresponds to an accuracy of ±3% of the standard model tree level prediction and
a determination of sin2 θW to ±0.0006. Keeping systematic uncertainties at or below that
level is difficult, but its technical feasibility has been experimentally demonstrated. Indeed,
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the experimental feasability study suggests that a measurement of ALR with a total error of
±1.4× 10−8 is possible.

The number of scattering events required for a 10−8 statistical accuracy is very large,
∼ 1016. However, such a large data set requirement is not so daunting when one considers
the gigantic cross-section in Møller scattering at low Q2. (A realistic experiment at SLAC
would have 〈Q2〉 ≈ 0.02 GeV2.)

A measurement of ∆ALR to ±1.4× 10−8 is only useful if one knows the standard model
prediction to that level of certainty. Such precision requires the inclusion of quantum loop
effects. Indeed, because the tree level prediction is suppressed by 1−4 sin2 θW , one anticipates
that the relative size of one loop contributions without such a suppression factor will be quite
big and that indeed turns out to be the case. In section II, we present the complete one
loop radiative corrections to ALR and show that they reduce the standard model prediction
by about 40%. That reduction results mainly from γ − Z mixing via hadronic vacuum
polarization effects. Hadronic loops necessarily entail theoretical uncertainty. However, we
show that the uncertainty is conservatively at the ±10−8 level in the experiment under
discussion and thus well matched to envisioned experimental errors. We describe how the
theoretical uncertainty could be further reduced by future studies. We also show how the
reduction in ALR can be viewed as the running of sin2 θW (q2) as q2 varies from m2

Z to
|q2| ≈ 0.02 GeV2 which is of relevance for Møller scattering in the planned fixed target
experiment.

As a byproduct of our study, we also show that the electron-electron parity violating
neutral current interaction is similarly reduced by about 40% with respect to tree level
expectations.

Given the possibility of measuring ∆ALR to ±1.4 × 10−8, one can also ask what “new
physics” would be probed? Also, how does such a measurement compare with other precision
studies, such as Atomic Parity Violation which has already reached the 1-2% level and where
further improvement is anticipated? To illustrate the utility of polarized e−e− scattering, we
examine in Section III several “new physics” scenarios such as effects of Z ′ bosons, S, T, U,
V, W and X loop effects, and constraints on an anomalous electron anapole moment. The
potential of a ±1.4 × 10−8 measurement of ALR is compared with various other precision
electroweak experiments, particularly atomic parity violation.

In Section IV, we summarize our conclusions and comment on possible future expecta-
tions.

II. ONE LOOP ELECTROWEAK RADIATIVE CORRECTIONS

Specification of the one loop radiative corrections to ALR(e−e−) requires that we prop-
erly define the renormalized parameters that are used in the tree level expression. Our
prescription is fairly conventional. We choose Gµ defined by the muon lifetime formula [5,6]

τ−1
µ =

G2
µm

5
µ

192π3
f

(
m2
e

m2
µ

)(
1 +

3

5

m2
µ

m2
W

)

×

[
1 +

α(mµ)

2π

(
25

4
− π2

)]
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f(x) ≡ 1− 8x+ 8x3 − x4 − 12x2 lnx,

α(mµ) ≈ 1/136 (5)

That definition leads to the value of Gµ in (3). Of course, many of the loop corrections to
muon decay have been absorbed into Gµ. Those corrections are needed when we express
neutral current amplitudes in terms ofGµ and will give rise to part of the radiative corrections
to ALR. Fortunately, those effects are known from previous studies [7–9].

The fine structure constant α in (2) is defined by Thomson scattering at q2 = 0 and
found to have the value in (3). That quantity is a holdover from atomic physics studies and
not always appropriate as a weak loop expansion parameter. For that reason, we prefer to
employ α(mZ)

α−1(mZ) = 127.9± 0.1 (6)

defined by MS (modified minimal subtraction) at µ = mZ in short distance dominated loop
corrections. By that judicious choice, we avoid inducing 2 loop effects that would be ∼7% of
the one loop corrections. Note, however, that some of the most important loop corrections
(in particular γZ mixing loops) are better (and more appropriately) parametrized by α [10].

The renormalized weak mixing angle will be defined by MS at scale µ = mZ,
sin2 θW (mZ)MS. The use of that scheme simplifies the form of the radiative corrections.
For readers more comfortable with sin2 θeff

W used in LEP and SLC asymmetries, there is a
simple numerical translation [11]

sin2 θW (mZ)MS = sin2 θeff
W − 0.0003 (7)

The analytic form of the radiative corrections in that translation is extremely complicated
and will not be given here.

For input, we use

sin2 θW (mZ)MS = 0.2314 (8)

which is consistent with Z pole measurements as well as the indirect determinations that
use α, Gµ and mZ = 91.190 GeV along with

mt(mt)MS ≡ mt = 170 GeV

mH = (Higgs Mass) = 200 GeV (9)

That input requires for standard model consistency, mW = 80.39 GeV, a value we also
adhere to.

Given the above renormalization prescription, we can now unambiguously write down
the one loop radiative corrections to ALR(e−e−). Some parts can be obtained from existing
calculations while others require a new study. In total, we find (2) is modified as follows

ALR(e−e−) =
ρGµQ

2

√
2πα

1− y

1 + y4 + (1− y)4

×
{

1 − 4κ(0) sin2 θW (mZ)MS +
α(mZ)

4πs2

−
3α(mZ)

32πs2c2
(1− 4s2)[1 + (1− 4s2)2]

+ F1(y,Q
2) + F2(y,Q

2)
}

(10)
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where

s ≡ sin θW (mZ)MS

c ≡ cos θW (mZ)MS (11)

The quantity ρ = 1 + O(α) comes about because we have chosen to normalize the weak
neutral current amplitude in terms of the muon decay constantGµ. From earlier work [8], one
finds that the renormalization of Gµ combined with vertex and self-energy renormalizations
of the Z amplitude gives

ρ = 1 +
α(mZ)

4π

{
3

4s4
ln c2 −

7

4s2
+

3

4s2

m2
t (mt)MS

m2
W

+
3

4

ξ

s2

(
ln(c2/ξ)

c2 − ξ
+

1

c2

ln ξ

1− ξ

)}
ξ = m2

H/m
2
Z (12)

Numerically, for a Higgs mass, mH = 200 GeV, and top mass mt(mt)MS = 170 GeV, one
finds

ρ = 1.00122 (13)

The smallness of that correction is due to accidental cancellations.
The most important loop corrections are embodied in κ(0) = 1+O(α). They come from

γ − Z mixing and the anapole moment diagrams illustrated in fig. 2. They are normalized
at Q2 = 0. Effects due to Q2 6= 0 are absorbed in F2(y,Q2) which will be discussed later.
Evaluated in a free field framework (i.e. ignoring strong interactions for the moment)

κ(0) = 1−
α

2πs2

1

3

∑
f

(T3fQf − 2s2Q2
f) ln

m2
f

m2
Z

−
(

7

2
c2 +

1

12

)
ln c2 +

(
7

9
−
s2

3

)}
(14)

where T3f = ±1/2 (weak isospin) and Qf= fermion electric charge. The sum over all
fermions (quarks and leptons) with mass < mZ comes from diagram 2a. (The top quark
decouples completely from κ(0) because of the specific definition of sin2 θW (mZ) we are using
[11].) The second and third terms stem from diagrams 2b and 2c respectively.

The quark contributions in (14) cannot be properly accounted for perturbatively. Instead,
one must use a dispersion relation to relate those vacuum polarization effects to e+e− →
hadrons data. Such an analysis replaces the quark sum in (14) by [9,12]

1

3

∑
quarks

(T3fQf − 2s2Q2
f) ln

m2
f

m2
Z

→ −6.88± 0.50 (15)

where the error assigned ±0.50 is rather conservative. We suspect that it would be lowered
somewhat by an updated analysis of e+e− → hadrons data. Such a study may, one day, be
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important, since the error in (15) will turn out to be the dominant theoretical uncertainty
and close to the projected experimental error presently attainable.

Numerically evaluating (14), one finds

κ(0) = 1.0301± 0.0025 (16)

That correction is very significant. It reduces the predicted ALR by about 38%. The reason
for that sensitivity is the fact that the quark loop diagrams in fig. 2 are not suppressed
by 1 − 4s2. Alternatively, one can say that κ(0) sin2 θW (mZ)MS is the effective low energy
mixing angle appropriate for small Q2 ∼ 0 rather than sin2 θW (mZ)MS. The 3% increase due
to the running of sin2 θW gets enhanced because of the 1− 4s2 sensitivity.

The next source of one loop corrections comes from the WW and ZZ box diagrams in
fig. 3. The WW box is not suppressed by 1− 4s2 and gives rise to the α(mZ)/4πs2 term in
(10). Taken alone that diagram gives a 4% enhancement of ALR relative to the lowest order
prediction. The ZZ box diagrams are suppressed by 1− 4s2. Hence, their contribution, the
3α(mZ)(1− 4s2)[1 + (1− 4s2)2]/32πs2c2 term in (10) is tiny, O(0.1%).

The next set of loops is illustrated in fig. 4. Together with photonic corrections to the
external legs and vertices in fig. 1 and two photon exchange diagrams, they give rise to Q2

dependent corrections denoted by F1(y,Q2) in (10). We find

F1(y,Q2) = −
α

4π
(1− 4s2)

{
22

3
ln
ym2

Z

Q2
+

85

9
+ f(y)

}
,

f(y) = −
2

3
ln [y(1− y)] +

1

(1− y + y2)2

{
−2 (1− y)

(
3− 3 y + 4 y3 − 3 y4

)
ln(1− y)

−2 y
(
1 + 3 y − 6 y2 + 8 y3 − 3 y4

)
ln(y)

+ (1− y)
(
2− 2 y − 7 y2 + 10 y3 − 8 y4 + 3 y5

)
ln2(1− y)

−y
(
2− 3 y − 5 y2 + 8 y3 − 7 y4 + 3 y5

)
ln2(y)

+
(
2− 4 y + 11 y3 − 13 y4 + 9 y5 − 3 y6

)
×
[
π2 − 2 ln(1− y) ln(y)

] }
(17)

For the maximum asymmetry, y = 1/2, one finds

f

(
1

2

)
=

17

12
π2 +

70

9
ln 2−

8

3
ln2 2 ≈ 18.09 (18)

The actual evaluation of F1 requires a value of sin2 θW . Should we use sin2 θW (mZ)MS =
0.2314 or κ(0) sin2 θW (mZ)MS = 0.2384 in (17)? A proper treatment requires a renormaliza-
tion group analysis of higher order leading logs. Instead of carrying out that study, we use
the average of those two values and use their spread to estimate a theoretical uncertainty.
In that way, we find for 〈Q2〉 = 0.02 GeV2

F1(1/2, 0.02 GeV2) = −0.0041 ± 0.0010 (19)
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The final contribution that we need to consider is the effect of vacuum polarization in
the γγ and γZ mixing self-energies for Q2 6= 0. Because we have chosen to normalize α and
κ(0) at zero momentum transfer, there can be a correction for Q2 non zero. Fortunately, the
residual Q2 6= 0 loop contributions largely cancel out (particularly for y = 1/2). In terms of
the γγ and γZ vacuum polarization function Πγγ and ΠγZ, one finds

F2(y,Q
2) =

−4cs

[
1

2

(
ΠγZ(−Q2) + ΠγZ

(
−

1− y

y
Q2

))
− ΠγZ(0)

]
+
(
1− 4s2

)
×

[
1

2

(
Πγγ(−Q

2) + Πγγ

(
−

1− y

y
Q2

))
− Πγγ(0)

]

−
(
1− 4s2

)(1

2
− y

)
1 + y(1− y)

1− y(1− y)

×

[
Πγγ

(
−

1− y

y
Q2

)
− Πγγ(−Q

2)

]
(20)

For y = 1/2, the last piece vanishes and lepton loops completely cancel. One finds

F2(y = 1/2, Q2) =

−4cs
[
ΠγZ(−Q2)− ΠγZ(0)

]∣∣∣
sin2 θW=1/4

(21)

where the partial cancellation of hadronic loops is simply accounted for by evaluating ΠγZ,
the vacuum polarization function, at sin2 θW = 1/4.

A proper evaluation of (21) requires a study of e+e− → hadrons data via dispersion rela-
tions similar to what went into (15). However, for Q2 relatively small, one can approximate
hadronic contributions to ΠγZ(−Q2) − ΠγZ(0) using a pion loop calculation. That rough
approach gives

F2(y = 1/2, Q2)pions ≈
α

4π

(
A3

3
ln
A+ 1

A− 1
−

2

9
−

2

3
A2

)

A ≡

(
1 +

4m2
π

Q2

)1/2

(22)

For Q2 ≈ 0.025 GeV2, the maximum at SLAC, one finds

F2(1/2, 0.025 GeV2) ≈ 2× 10−5 (23)

which is negligible. So, it seems, that for any foreseeable fixed target effort one can neglect
F2. It is in the noise. Of course, if Q2 � m2

π, a careful evaluation of F2(y,Q2) would have
to be undertaken.

The last issue that must be addressed is the effect of bremsstrahlung on ALR. We have
not included that effect because it is dependent on the kinematic acceptance of a given
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experiment. However, we do expect on general grounds, that bremsstrahlung is relatively
unimportant. Our reasoning is as follows: soft photon effects, including radiation damp-
ing, factorize and cancel in the asymmetry ratio. Hard bremsstrahlung should also largely
cancel, although the degree of cancellation probably depends on details of the experimental
geometry. What contribution remains is proportional to α

π
(1 − 4κ(0) sin2 θW (mZ)MS) and

hence, likely to be very small. Therefore, neglect of bremsstrahlung, seems justified at the
level of theoretical and experimental uncertainties we are considering. Of course, if a spe-
cific experiment is carried out, correcting for bremsstrahlung effects is straightforward and
should be addressed by the experimentalists.

Collecting all of the one loop radiative corrections, one finds for y = 1/2 and Q2 =
0.025 GeV2

1− 4 sin2 θW → 1.00122 [1− 4(1.0301± 0.0025)(0.2314)

+0.0027− 0.0001− 0.0041 ± 0.0010]

(24)

or

0.0744→ 0.0450± 0.0023 ± 0.0010 (25)

That represents a 40 ± 3% reduction in the asymmetry due to quantum loop effects. The
reduction is rather insensitive to y or Q2 (unless we go to extreme values). That 40% reduc-
tion also (roughly) applies to the parity violating electron-electron interaction of interest in
atomic parity violation [13]. (In fact, the reduction there is about 43%.) It renders what
was already a tiny effect essentially negligible.

For Q2 = 0.025 GeV2 and y = 1/2, as envisioned in a potential SLAC experiment, one
finds that the radiative corrections reduce ALR(e−e−) from 2.97 × 10−7 to (1.80 ± 0.09 ±
0.04)× 10−7. The theoretical uncertainties in that result are roughly at the level of present
experimental statistical capabilities. They are, however, somewhat conservative. One could
imagine that further scrutiny of e+e− → hadrons data and use of the renormalization group
to incorporate higher order leading logs could reduce the theoretical errors by about a factor
of 2. Hence, theory and realistic experimental precision are well matched.

A measurement of ALR(e−e−) to 1.4×10−8 may actually be made easier because of the re-
duction we have found. Indeed, some systematic uncertainties which depend on polarization
monitoring uncertainties are proportional to ALR and hence also reduced by 40%.

From our results, one sees that a determination of ALR to ±1.4 × 10−8 measures the
standard model radiative corrections at about the 7 sigma or more level. Those corrections
stem mainly from γZ vacuum polarization effects and can be viewed as the running of
sin2 θW (µ)MS from its value 0.2314 at µ = mZ to a 3% larger value at µ = 0. Confirming
that loop prediction of the standard model would certainly be an important result. Of
course, such sensitivity implies that a measurement of ALR to ±1.4× 10−8 is likely to also
be a good probe of “new physics”. We, therefore, now describe its potential for several
examples of physics beyond the standard model.
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III. “NEW PHYSICS” SENSITIVITY

Comparison of a precise measurement of ALR with the standard model prediction can
provide a sensitive probe of “new physics”. It requires, of course, a “new physics” contri-
bution to the parity violating e−e− → e−e− amplitude. Also, ALR can indicate a deviation
from the standard model, but cannot specify the source. Nevertheless, it is instructive to
examine various “new physics” scenarios and compare their implications for ALR and other
precision measurements. Here, we consider a few representative examples. For each case,
we quote the 1σ reach of ALR, assuming a standard model central prediction of 1.8× 10−7

(for y = 1/2 and Q2 = 0.025 GeV2) and a total uncertainty (experimental and theoretical)
of ±1.4× 10−8, i.e. a ±7.8% confrontation.

A. Z ′ bosons

Grand unified theories, such as SO(10) and E6, often predict the existence of additional
neutral gauge bosons, collectively called Z ′s. The masses of those particles are not specified,
but could under certain conditions be relatively light, O(1 TeV), and nevertheless beyond
the reach of current experiments. For definiteness, we consider the E6 model [12] which
contains two Z ′ eigenstates (with mZβ < mZ′

β
)

Zβ = Zχ cosβ + Zψ sinβ

Z ′β = −Zχ sinβ + Zψ cos β

−
π

2
≤ β ≤

π

2
(26)

E6 symmetry specifies the couplings to electrons (up to some renormalization uncertainties)
and one finds that ALR is increased by a factor [12]

1 + 7

 m2
Z

m2
Zβ

cos2 β +

√
5

3
sinβ cosβ


+
m2
Z

m2
Z′
β

sin2 β −

√
5

3
sinβ cos β

 (27)

For an (effective) SO(10) model, β = 0, that expression simplifies to

1 + 7
m2
Z

m2
Zχ

(28)

Hence, at the 1σ level, mZχ ≈ 870 GeV is probed. That reach is roughly equivalent to a
±1% determination of atomic parity violation in cesium [14–16]. It is also comparable to
the discovery reach of an upgraded Tevatron pp̄ collider.
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B. Electron Anapole Moment

The electron matrix element of the electromagnetic current, J em
µ , can be written as (with

q = p′ − p)

〈e(p′)|J em
µ |e(p)〉 = ūe(p

′)Γµue(p)

Γµ = F1(q2)γµ + iF2(q
2)σµνq

ν − F3(q
2)σµνq

νγ5

+FA(q2)
(
γµq

2 − 2meqµ
)
γ5 (29)

The first three form factors at q2 = 0 give the electric charge, anomalous magnetic moment,
and electric dipole moment (in units of e). All three are physical observables. The parity
violating form factor FA(q2) at q2 = 0 is called the anapole moment. It is not a direct physical
observable and suffers from electroweak gauge ambiguities. Indeed, in the standard model it
is merely a part of the total loop corrections to a physical quantity and cannot be uniquely
disentangled. Nevertheless, it is, in principle, possible that some forms of “new physics”
contribute to ALR primarily through the electromagnetic anapole moment. Alternatively,
one can view constraints on FA(0) as providing a figure of merit for comparing different
measurements.

The anapole moment interaction in (29) would shift the ALR prediction by a factor(
1 +

8
√

2πα

Gµ(1− 4 sin2 θW )
FA(0)

)
(30)

or in units of the W boson mass (
1 + 77m2

WFA(0)
)

(31)

Therefore, a measurement of ALR to ±7.8% probes

FA(0) = ±
1× 10−3

m2
W

≈ ±(8× 10−18 cm)2 (32)

That level of sensitivity compares very favorably with other studies [17]. It corresponds to
atomic parity violation in cesium at about the ±0.3% level.

C. The X parameter

If high mass scale “new physics” enters through gauge boson propagators, it is conve-
niently studied using the Peskin-Takeuchi S, T , and U parameters [18]. If the scale of the
“new physics” is O(mZ), rather than � mZ, that formalism should be extended to S, T ,
U , V , W , X [19,20]. The additional quantities parametrize changes from Q2 ≈ 0 to m2

Z due
to “new physics” loops. In that approach, our κ(0) in eq. (14) gets multiplied by [20]

(1− 0.032X) (33)

A measurement of ALR to ±7.8% or ∆ sin2 θW to ±0.0011 then constrains X at the ±0.14
level. That is to be compared with global fits to all existing data [20] which currently give
X = 0.38± 0.59. So, an ALR measurement could improve the constraint by a factor of 4 or
so.
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D. Generic Loops

If we parametrize “new physics” loop contributions to ALR by a general parity violating
4 Fermi interaction

C
α2

M2
ēγµγ5eēγ

µe (34)

with M (roughly) the “new physics” mass scale, it modifies ALR by a factor(
1 + 0.05C

m2
W

M2

)
(35)

In theories with C ≈ 1, we see that a ±7.8% measurement of ALR explores the M ≈ mW

scale. That is in keeping with our finding that the WW box diagram shifts ALR by about
+7%. Of course, there can be enhancements or suppressions in the case of “new physics”. It
would be interesting to compute C/M2 in classes of low mass supersymmetry models. That
exercise is, however, beyond the scope of this paper.

IV. CONCLUSION

We have calculated the one loop electroweak radiative corrections to the parity vio-
lating electron-electron interactions and found a rather substantial 40± 3% reduction of
the tree level prediction. That result further reduces (the already insignificant) role of the
electron-electron interaction in atomic parity violation and has interesting consequences for
the left-right asymmetry in polarized Møller scattering. It is clear that any future precision
measurement of ALR must be cognizant of those large corrections. We also showed that an
experimental determination of ALR at the ±7.8% level provides a useful and competitive
probe of “new physics”. Used in conjunction with other precision measurements and direct
high energy probes it may unveil and help to decipher physics beyond the standard model.
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FIGURES

FIG. 1. Neutral current amplitudes leading to the asymmetry ALR at tree level.

FIG. 2. γ − Z mixing diagrams (a-b) W -loop contribution to the anapole moment (c).

FIG. 3. Box diagrams with two heavy bosons.

FIG. 4. Boxes containing one photon and Z-loop contribution to the anapole moment.
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