1,542 research outputs found

    Electroweak Radiative Corrections To Polarized M{\o}ller Scattering Asymmetries

    Get PDF
    One loop electroweak radiative corrections to left-right parity violating M{\o}ller scattering (eeeee^-e^-\to e^-e^-) asymmetries are presented. They reduce the standard model (tree level) prediction by 40±3\pm 3 \% where the main shift and uncertainty stem from hadronic vacuum polarization loops. A similar reduction also occurs for the electron-electron atomic parity violating interaction. That effect can be attributed to an increase of sin2θW(q2)\sin^2\theta_W(q^2) by 3%3\% in running from q2=mZ2q^2=m_Z^2 to 0. The sensitivity of the asymmetry to ``new physics'' is also discussed.Comment: 14 pages, Revtex, postscript file including figures is available at ftp://ttpux2.physik.uni-karlsruhe.de/ttp95-14/ttp95-14.ps or via WWW at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints/ (129.13.102.139

    Evidence for Bosonic Electroweak Corrections in the Standard Model

    Get PDF
    We present strong indirect evidence for the contribution of bosonic electroweak corrections in the Standard Model. Although important conceptually, these corrections give subleading contributions in current high energy experiments, and it was previously thought that they are difficult to detect. We also discuss the separate contribution of the Higgs boson.Comment: 9 pages (LaTeX + 3 PS figures, needs psfig

    Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    Full text link
    A previous calculation of electroweak O(alpha) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from \Delta\alpha and \Delta\rho as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O(alpha)-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS like. As a technical byproduct, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by non-universal two-loop effects and is of the order 0.0003 when translated into a shift in sin^2\theta_W=1-MW^2/MZ^2. The O(alpha) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.Comment: 25 pages, latex, 8 postscript figure

    K_L \ra \mu^\pm e^\mp \nu \overline{\nu} as background to K_L \ra \mu^\pm e^\mp

    Full text link
    We consider the process K_L \ra \mu^\pm e^\mp \nu \overline{\nu} at next to leading order in chiral perturbation theory. This process occurs in the standard model at second order in the weak interaction and constitutes a potential background in searches for new physics through the modes K_L \ra \mu^\pm e^\mp. We find that the same cut, Mμe>489M_{\mu e}>489~MeV, used to remove the sequential decays K_{l3}\ra \pi_{l2} pushes the B(K_L \ra \mu^\pm e^\mp \nu \overline{\nu}) to the 102310^{-23} level, effectively removing it as a background.Comment: 8 pages, LaTeX, 1 figure appended as postscript file after \end{document}. Fermilab-Pub-93/024-

    Dimuon production by laser-wakefield accelerated electrons

    Full text link
    We analyze μ+μ\mu^+\mu^- pair production generated by high-energy electrons emerging from a laser-wakefield accelerator. The μ+μ\mu^+\mu^- pairs are created in a solid thick high-ZZ target, following the electron accelerating plasma region. Numerical estimates are presented for electron beams obtained presently in the LBL TW laser experiment \cite{C2} and possible future developments. Reactions induced by the secondary bremsstrahlung photons dominate the dimuon production. According to our estimates, a 20 pC electron bunch with energy of 1 (10) GeV may create about 200 (6000) muon pairs. The produced μ±\mu^\pm can be used in studying various aspects of muon-related physics in table top installations. This may be considered as an important step towards the investigation of more complicated elementary processes induced by laser driven electrons.Comment: 14 pages, 5 figure

    Flavour Mixing, Gauge Invariance and Wave-function Renormalisation

    Get PDF
    We clarify some aspects of the LSZ formalism and wave function renormalisation for unstable particles in the presence of electroweak interactions when mixing and CP violation are considered. We also analyse the renormalisation of the CKM mixing matrix which is closely related to wave function renormalisation. We critically review earlier attempts to define a set of "on-shell" wave function renormalisation constants. With the aid of an extensive use of the Nielsen identities complemented by explicit calculations we corroborate that the counter term for the CKM mixing matrix must be explicitly gauge independent and demonstrate that the commonly used prescription for the wave function renormalisation constants leads to gauge parameter dependent amplitudes, even if the CKM counter term is gauge invariant as required. We show that a proper LSZ-compliant prescription leads to gauge independent amplitudes. The resulting wave function renormalisation constants necessarily possess absorptive parts, but we verify that they comply with the expected requirements concerning CP and CPT. The results obtained using this prescription are different (even at the level of the modulus squared of the amplitude) from the ones neglecting the absorptive parts in the case of top decay. The difference is numerically relevant.Comment: 19 pages, plain latex, one ps figur

    Electroweak radiative corrections to deep-inelastic neutrino scattering - implications for NuTeV ?

    Full text link
    We calculate the O(alpha) electroweak corrections to charged- and neutral-current deep-inelastic neutrino scattering off an isoscalar target. The full one-loop-corrected cross sections, including hard photonic corrections, are evaluated and compared to an earlier result which was used in the NuTeV analysis. In particular, we compare results that differ in input-parameter scheme, treatment of real photon radiation and factorization scheme. The associated shifts in the theoretical prediction for the ratio of neutral- and charged-current cross sections can be larger than the experimental accuracy of the NuTeV result.Comment: 19 pages late

    The Hidden Quantum Groups Symmetry of Super-renormalizable Gravity

    Full text link
    In this paper we consider the relation between the super-renormalizable theories of quantum gravity (SRQG) studied in [arXiv:1110.5249v2, arXiv:1202.0008] and an underlying non-commutativity of spacetime. For one particular super-renormalizable theory we show that at linear level (quadratic in the Lagrangian) the propagator of the theory is the same we obtain starting from a theory of gravity endowed with {\theta}-Poincar\'e quantum groups of symmetry. Such a theory is over the so called {\theta}-Minkowski non-commuative spacetime. We shed new light on this link and show that among the theories considered in [arXiv:1110.5249v2, arXiv:1202.0008], there exist only one non-local and Lorentz invariant super-renormalizable theory of quantum gravity that can be described in terms of a quantum group symmetry structure. We also emphasize contact with pre-existent works in the literature and discuss preservation of the equivalence principle in our framework.Comment: 10 page

    Fermi Constants and ``New Physics''

    Get PDF
    Various precision determinations of the Fermi constant are compared. Included are muon and (leptonic) tau decays as well as indirect prescriptions employing \alpha, m_Z, m_W, \ssthwmzms, \Gamma(Z\to\ell^+\ell^-), and Γ(Zννˉ)\Gamma(Z \to \nu\bar \nu) as input. Their good agreement tests the standard model at the ±0.1\pm 0.1% level and provides stringent constraints on new physics. That utility is illustrated for: heavy neutrino mixing, 2 Higgs doublet models, S, T, and U parameters and excited W±W^{\ast^\pm} bosons (Kaluza-Klein excitations). For the last of those examples, m_{W^\ast}\gsims 2.9 TeV is found.Comment: 14 page
    corecore