632 research outputs found
Comparison of Ten Metal-Doped LaFeO3 Samples on Photocatalytic Degradation of Antibiotics in Water under Visible Light: Role of Surface Area and Aqueous Phosphate Ions
Doping semiconducting oxides, such as LaFeO3 (LF), with metallic elements is a good strategy to improve the performance of photocatalysts. In this study, LF and ten different nanopowders metal-doped at the La or Fe site of LaFeO3 were evaluated in the photocatalytic degradation of ciprofloxacin (CP) and oxytetracycline (OTC). The following metals were used in the doping (mol%) process of LF: Pd 3% and 5%; Cu 10%; Mg 5%, 10%, and 20%; Ga 10%; Y 10% and 20%; and Sr 20%. The doped samples were synthetized using a citrate auto-combustion technique. From the X-ray diffraction (XRD) data, only a single crystalline phase, namely an orthorhombic perovskite structure, was observed except for trace amounts of PdO in the sample with Pd 5%. The specific surface area (SSA) ranged from 9 m(2) g(-1) (Ga 10%) to 20 m(2) g(-1) (Mg 20%). SEM images show that all samples were constituted from agglomerates of particles whose sizes ranged from ca. 20 nm (Mg 20%) to ca. 100 nm (Pd 5%). Dilute aqueous solutions (5 x 10(-6) M) prepared for both CP and OTC were irradiated for 240 min under visible-light and in the presence of H2O2 (10(-2) M). The results indicate a 78% removal of OTC with Cu 10% doped LF in a phosphate buffer (pH = 5.0). The degradation of CP is affected by pH and phosphate ions, with 78% (in unbuffered solution) and 54% (in phosphate buffer, pH = 5.0) removal achieved with Mg 10% doped LF. The reactions follow a pseudo-first order kinetic. Overall, this study is expected to deepen the assessment of photocatalytic activity by using substrates with different absorption capacities on photocatalysts
Photocatalytic CO 2 Valorization by Using Ti O2 , ZrO2 and Graphitic Based Semiconductors
In this century, a broad scientific interest has been devoted to fulfill sustainable industrial processes and climatic change remediation. In this prospective, various green technologies have been studied to valorize CO 2• The aim of this research is the CO 2 reduction in presence of water by using the photocatalytic technology with nanomaterials as the photocatalysts. The present work overviews the main outcomes obtained by using graphitic and oxide based photocatalysts both in gas/solid and liquid/solid batch reactors under simulated solar light. In all gas/solid regime tests the major products detected were methane, carbon monoxide, and acetaldehyde
Early childhood lung function is a stronger predictor of adolescent lung function in cystic fibrosis than early Pseudomonas aeruginosa infection
Pseudomonas aeruginosa has been suggested as a major determinant of poor pulmonary outcomes in cystic fibrosis (CF), although other factors play a role. Our objective was to investigate the association of early childhood Pseudomonas infection on differences in lung function in adolescence with CF
Recommended from our members
A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites.
Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons
Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with Different Environmental Features
Internal levels of selected endocrine disruptors (EDs) (i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), di-2-ethylhexyl-phthalate (DEHP), mono-(2-ethylhexyl)-phthalate (MEHP), and bisphenol A (BPA)) were analyzed in blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood mononuclear cells (PBMCs) of same subjects, gene expression levels of a panel of nuclear receptors (NRs), namely estrogen receptor α (ERα) estrogen receptor β (ERβ), androgen receptor (AR), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptor γ (PPARγ) and pregnane X receptor (PXR) were also assessed. Infertile men from the metropolitan area had significantly higher levels of BPA and gene expression of all NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had significantly higher levels of MEHP, whereas subjects from rural area had higher levels of PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR expression is directly correlated with BPA and inversely correlated with PFOA serum levels. Our study indicates the relevance of the living environment when investigating the exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a potential biomarker of effect to assess the EDs impact on reproductive health
- …