145 research outputs found

    Design of 2D Porous Coordination Polymers Based on Metallacrown Units

    Full text link
    A 12‐metallacrown‐4 (MC) complex was designed and employed as the building block in the synthesis of coordination polymers, one of which is the first permanently porous MC architecture. The connection of the four‐fold symmetric MC subunits by CuII nodes led to the formation of 2D layers of metallacrowns. Channels are present in the crystalline architecture, which exhibits permanent porosity manifested in N2 and CO2 uptake capacity.Permanently porous metallacrowns: Metallacrowns have been exploited for the first time as tailored building blocks for the construction of new (porous) coordination polymers. Metallacrowns are metal‐rich complexes that have exhibited excellent properties in magnetism and luminescence. Benefiting from high‐interest metallacrown building blocks in the synthesis of MOFs can unfold a whole new class of functional materials (see figure).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137586/1/chem201600562-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137586/2/chem201600562.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137586/3/chem201600562_am.pd

    IL-12-dependent innate immunity arrests endothelial cells in G0-G1 phase by a p21(Cip1/Waf1)-mediated mechanism.

    Get PDF
    Innate immunity may activate paracrine circuits able to entail vascular system in the onset and progression of several chronic degenerative diseases. In particular, interleukin (IL)-12 triggers a genetic program in lymphomononuclear cells characterized by the production of interferon-γ and specific chemokines resulting in an angiostatic activity. The aim of this study is to identify molecules involved in the regulation of cell cycle in endothelial cells co-cultured with IL-12-stimulated lymphomonuclear cells. By using a transwell mediated co-culture system we demonstrated that IL-12-stimulated lymphomonuclear cells induce an arrest of endothelial cells cycle in G1, which is mainly mediated by the up-regulation of p21(Cip1/Waf1), an inhibitor of cyclin kinases. This effect requires the activation of STAT1, PKCδ and p38 MAPK, while p53 is ineffective. In accordance, siRNA-dependent silencing of these molecules in endothelial cells inhibited the increase of p21(Cip1/Waf1) and the modification in cell cycle promoted by IL-12-stimulated lymphomonuclear cells. These results indicate that the angiostatic action of IL-12-stimulated lymphomononuclear cells may lie in the capability to arrest endothelial cells in G1 phase through a mechanisms mainly based on the specific up-regulation of p21(Cip1/Waf1) induced by the combined activity of STAT1, PKCδ and p38 MAPK

    Structural changes in MII dithione/dithiolato complexes (M = Ni, Pd, Pt) on varying the dithione functionalization

    Get PDF
    The Ni triad [M(R2pipdt)(dmit)] based on donor/acceptor S,S′ ligands, where R2pipdt = 1,4-diisopropyl-piperazine-2,3-dithione (acceptor) and dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato (donor), was completed by preparing and characterizing the Pd(2) and Pt(3) compounds in addition to the already known Ni(1) complex. The rationale behind the work was to compare the properties and structures inside the triad with those of the corresponding Ni(4), Pd(5) and Pt(6) complexes where R = Bz. Minor changes in the properties as redox active nonlinear second-order (NLO) chromophores were observed in solution for the two triads. Instead, different structural features, reflected by changes in the diffuse reflectance spectra, were observed in their crystals on changing R from Bz to Pri in the piperazine ring and also, more surprisingly, inside the triads. 2 (isostructural with 1) and 3 crystallized in monoclinic P21/n and orthorhombic Pbca space groups, respectively. The crystal packings of 2 and 3 are also markedly different. In particular 1 and 2 form head-to-tail dimers whereas 3 forms supramolecular layers characterized by a partial stack between the molecular planes. Large differences in the crystal structures, induced by the diverse number and types of interactions exchanged by the peripheral fragments of the ligands, were found in the Bz-triad. Indeed, the molecules are stacked in a head-to-head and in a head-to-tail fashion in 4 and in 5/6, respectively. Moreover, significantly different packings were observed. The Hirshfeld surface analysis was used to provide a detailed description of the main types of interactions involved in the crystal packing of the six complexes

    Differences and homologies of chromosomal alterations within and between breast cancer cell lines: A clustering analysis

    Get PDF
    BACKGROUND: The MCF7 (ER+/HER2-), T47D (ER+/HER2-), BT474 (ER+/HER2+) and SKBR3 (ER-/HER2+) breast cancer cell lines are widely used in breast cancer research as paradigms of the luminal and HER2 phenotypes. Although they have been subjected to cytogenetic analysis, their chromosomal abnormalities have not been carefully characterized, and their differential cytogenetic profiles have not yet been established. In addition, techniques such as comparative genomic hybridization (CGH), microarray-based CGH and multiplex ligation-dependent probe amplification (MLPA) have described specific regions of gains, losses and amplifications of these cell lines; however, these techniques cannot detect balanced chromosomal rearrangements (e.g., translocations or inversions) or low frequency mosaicism. RESULTS: A range of 19 to 26 metaphases of the MCF7, T47D, BT474 and SKBR3 cell lines was studied using conventional (G-banding) and molecular cytogenetic techniques (multi-color fluorescence in situ hybridization, M-FISH). We detected previously unreported chromosomal changes and determined the content and frequency of chromosomal markers. MCF7 and T47D (ER+/HER2-) cells showed a less complex chromosomal make up, with more numerical than structural alterations, compared to BT474 and SKBR3 (HER2+) cells, which harbored the highest frequency of numerical and structural aberrations. Karyotype heterogeneity and clonality were determined by comparing all metaphases within and between the four cell lines by hierarchical clustering. The latter analysis identified five main clusters. One of these clusters was characterized by numerical chromosomal abnormalities common to all cell lines, and the other four clusters encompassed cell-specific chromosomal abnormalities. T47D and BT474 cells shared the most chromosomal abnormalities, some of which were shared with SKBR3 cells. MCF7 cells showed a chromosomal pattern that was markedly different from those of the other cell lines. CONCLUSIONS: Our study provides a comprehensive and specific characterization of complex chromosomal aberrations of MCF7, T47D, BT474 and SKBR3 cell lines. The chromosomal pattern of ER+/HER2- cells is less complex than that of ER+/HER2+ and ER-/HER2+ cells. These chromosomal abnormalities could influence the biologic and pharmacologic response of cells. Finally, although gene expression profiling and aCGH studies have classified these four cell lines as luminal, our results suggest that they are heterogeneous at the cytogenetic level

    A complex of α(6) integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6.

    Get PDF
    Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α(6) integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α(6) integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α(6) integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC

    Pathological non-response to chemotherapy in a neoadjuvant setting of breast cancer: an inter-institutional study

    Get PDF
    To identify markers of non-response to neoadjuvant chemotherapy (NAC) that could be used in the adjuvant setting. Sixteen pathologists of the European Working Group for Breast Screening Pathology reviewed the core biopsies of breast cancers treated with NAC and recorded the clinico-pathological findings (histological type and grade; estrogen, progesterone receptors, and HER2 status; Ki67; mitotic count; tumor-infiltrating lymphocytes; necrosis) and data regarding the pathological response in corresponding surgical resection specimens. Analyses were carried out in a cohort of 490 cases by comparing the groups of patients showing pathological complete response (pCR) and partial response (pPR) with the group of non-responders (pathological non-response: pNR). Among other parameters, the lobular histotype and the absence of inflammation were significantly more common in pNR (p < 0.001). By ROC curve analyses, cut-off values of 9 mitosis/2 mm(2) and 18 % of Ki67-positive cells best discriminated the pNR and pCR + pPR categories (p = 0.018 and < 0.001, respectively). By multivariable analysis, only the cut-off value of 9 mitosis discriminated the different response categories (p = 0.036) in the entire cohort. In the Luminal B/HER2- subgroup, a mitotic count < 9, although not statistically significant, showed an OR of 2.7 of pNR. A lobular histotype and the absence of inflammation were independent predictors of pNR (p = 0.024 and < 0.001, respectively). Classical morphological parameters, such as lobular histotype and inflammation, confirmed their predictive value in response to NAC, particularly in the Luminal B/HER2- subgroup, which is a challenging breast cancer subtype from a therapeutic point of view. Mitotic count could represent an additional marker but has a poor positive predictive value
    corecore