687 research outputs found

    Letter: Intestinal microbiota transfer – Updating the nomenclature to increase acceptability

    Get PDF
    This article is linked to Lai et al paper. To view this article, visit https://doi.org/10.1111/apt.1511

    The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases

    Get PDF
    The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major ‘whole microbiome’ therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, he potential use of FMT in treating other infectious diseases is an area of active research. In this Review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT

    Gaps in knowledge and future directions for the use of faecal microbiota transplant in the treatment of inflammatory bowel disease

    Get PDF
    Faecal microbiota transplant (FMT) has now been established into clinical guidelines for the treatment of recurrent and refractory Clostridioides difficile infection (CDI). Its therapeutic application in inflammatory bowel disease (IBD) is currently at an early stage. To date there have been four randomised controlled trials for FMT in IBD and a multitude of observational studies. However significant gaps in our knowledge regarding optimum methods for FMT preparation, technical and logistics of its administration, as well as mechanistic underpinnings, still remain. This article aims to highlight these gaps by reviewing evidence and makes key recommendations on the direction of future studies in this field. In addition, we provide an overview of the current evidence of potential mechanistics of FMT in IBD

    Systemic Characterization of an Obese Phenotype in the Zucker Rat Model Defining Metabolic Axes of Energy Metab-olism and Host-Microbial Interactions

    Get PDF
    The Zucker (fa/fa) rat is a valuable and extensively utilized model for obesity research. However, the metabolic networks underlying the systemic response in the obese Zucker rats remain to be elucidated. This information is important to further our understanding of the circulation of the microbial or host–microbial metabolites and their impact on host metabolism. 1H nuclear magnetic resonance spectroscopy-based metabolic profiling was used to probe global metabolic differences in portal vein and peripheral blood plasma, urine and fecal water between obese (fa/fa, n = 12) and lean (fa/+, n = 12) Zucker rats. Urinary concentrations of host–microbial co-metabolites were found to be significantly higher in lean Zucker rats. Higher concentrations of fecal lactate, short chain fatty acids (SCFAs), 3-hydroxyphenyl propionic acid and glycerol, and lower levels of valine and glycine were observed in obese rats compared with lean animals. Regardless of phenotype, concentrations of SCFAs, tricarboxylic acid cycle intermediates, and choline metabolites were higher in portal vein blood compared to peripheral blood. However, higher levels of succinate, phenylalanine and tyrosine were observed in portal vein blood compared with peripheral blood from lean rats but not in obese rats. Our findings indicate that the absorption of propionate, acetate, choline, and trimethylamine is independent of the Zucker rat phenotypes. However, urinary host–microbial co-metabolites were highly associated with phenotypes, suggesting distinct gut microbial metabolic activities in lean and obese Zucker rats. This work advances our understanding of metabolic processes associated with obesity, particularly the metabolic functionality of the gut microbiota in the context of obesity

    Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome

    No full text
    A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B. subtilis DSM10. Further analysis of the deduced amino acid sequence of AbgT revealed moderate homology to esterases, suggesting that the protein may possess hydrolytic activity. Weak lipolytic activity was detected; however the clone did not appear to produce any β-lactamase activity. Phylogenetic analysis revealed the protein is a member of the family VIII group of lipase/esterases and clusters with a number of proteins of metagenomic origin. The abgT gene was sub-cloned into a protein expression vector and when introduced into the abgT transposon mutant clones restored the ability of the clones to inhibit the growth of B. subtilis DSM10, clearly indicating that the abgT gene is involved in the antibacterial activity. While the precise role of this protein has yet to fully elucidated, it may be involved in the generation of free fatty acid with antibacterial properties. Thus functional metagenomic approaches continue to provide a significant resource for the discovery of novel functional proteins and it is clear that hydrolytic enzymes, such as AbgT, may be a potential source for the development of future antimicrobial therapies

    Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants.

    Get PDF
    BACKGROUND: Chronic lung disease of prematurity (CLD), also called bronchopulmonary dysplasia, is a major consequence of preterm birth but the role of the microbiome in its development remains unclear. We, therefore, assessed the progression of the bacterial community in ventilated preterm infants over time in the upper and lower airways, and assessed the gut-lung axis by comparing the upper and lower airways bacterial communities with the stool findings. Finally, we assessed if the bacterial communities were associated with lung inflammation to suggest dysbiosis. METHODS: We serially sampled multiple anatomical sites including the upper airway (nasopharyngeal aspirates, NPA), lower airways (tracheal aspirate fluid, TAF, and bronchoalveolar lavage fluid, BAL) and the gut (stool) of ventilated preterm-born infants. Bacterial DNA load was measured in all samples and sequenced using the V3-V4 region of the 16S rRNA gene RESULTS: From 1102 (539 NPA, 276 TAF, 89 BAL, 198 stool) samples from 55 preterm infants, 352 (32%) amplified suitably for 16 s RNA gene sequencing. Bacterial load was low at birth, quickly increased with time but was associated with predominant operational taxonomic units (OTUs) in all sample types. There was dissimilarity in bacterial communities between the upper and lower airways and the gut with a separate dysbiotic inflammatory process occurring in the lower airways of infants. Individual OTUs were associated with increased inflammatory markers. CONCLUSIONS: Taken together, these findings suggest that targeted treatment of the predominant organisms, including those not routinely treated such as Ureaplasma spp., may decrease the development of CLD in preterm-born infants

    Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation

    Get PDF
    Prolonged ingestion of a cholesterol- or saturated fatty acid-enriched diet induces chronic, often systemic, auto-inflammatory responses resulting in significant health problems worldwide. In vivo information regarding the local and direct inflammatory effect of these dietary components in the intestine and, in particular, on the intestinal epithelium is lacking. Here we report that both mice and zebrafish exposed to high-fat (HFDs) or high-cholesterol (HCDs) diets develop acute innate inflammatory responses within hours, reflected in the localized interleukin-1β-dependent accumulation of myeloid cells in the intestine. Acute HCD-induced intestinal inflammation is dependent on cholesterol uptake via Niemann-Pick C1-like 1 and inflammasome activation involving apoptosis-associated Speck-like protein containing a caspase recruitment domain, which leads to Caspase-1 activity in intestinal epithelial cells. Extended exposure to HCD results in localized, inflammation-dependent, functional dysregulation as well as systemic pathologies. Our model suggests that dietary cholesterol initiates intestinal inflammation in epithelial cells

    The Bacteroidales produce an N-acylated derivative of glycine with both cholesterol-solubilising and hemolytic activity.

    Get PDF
    The contribution of the gut microbiota to the metabolism of cholesterol is not well understood. In this study, we identify 21 fosmid clones from a human gut microbiome metagenomic library that, when expressed in Escherichia coli, produce halos on LB agar supplemented with 0.01% (w/v) cholesterol (LBC agar). Analysis of 14 of these clones revealed that they all share a fragment of DNA with homology to the genome of Bacteroides vulgatus. The gene responsible for halo production on LBC agar, named choA, was identified as an N-acyltransferase known to produce an acylated glycine molecule called commendamide. In this study we show that commendamide is capable of producing a halo on LBC agar suggesting that this molecule is solubilizing the cholesterol micelles in LBC agar. We also show that commendamide is responsible for the previously described hemolytic activity associated with the choA orthologue in Bacteroides fragilis. A functional analysis of ChoA identified 2 amino acids that are important for commendamide biosynthesis and we present phylogenetic and functional data showing that orthologues of choA are found only in the order Bacteroidales. Therefore, the production of commendamide may be an adaptation to the environments colonized by the Bacteroidales, including the mammalian gut

    Impact of fecal microbiota transplantation on gut bacterial bile acid metabolism in humans

    Get PDF
    Fecal microbiota transplantation (FMT) is a promising therapeutic modality for the treatment and prevention of metabolic disease. We previously conducted a double-blind, randomized, placebo-controlled pilot trial of FMT in obese metabolically healthy patients in which we found that FMT enhanced gut bacterial bile acid metabolism and delayed the development of impaired glucose tolerance relative to the placebo control group. Therefore, we conducted a secondary analysis of fecal samples collected from these patients to assess the potential gut microbial species contributing to the effect of FMT to improve metabolic health and increase gut bacterial bile acid metabolism. Fecal samples collected at baseline and after 4 weeks of FMT or placebo treatment underwent shotgun metagenomic analysis. Ultra-high-performance liquid chromatography-mass spectrometry was used to profile fecal bile acids. FMT-enriched bacteria that have been implicated in gut bile acid metabolism included Desulfovibrio fairfieldensis and Clostridium hylemonae. To identify candidate bacteria involved in gut microbial bile acid metabolism, we assessed correlations between bacterial species abundance and bile acid profile, with a focus on bile acid products of gut bacterial metabolism. Bacteroides ovatus and Phocaeicola dorei were positively correlated with unconjugated bile acids. Bifidobacterium adolescentis, Collinsella aerofaciens, and Faecalibacterium prausnitzii were positively correlated with secondary bile acids. Together, these data identify several candidate bacteria that may contribute to the metabolic benefits of FMT and gut bacterial bile acid metabolism that requires further functional validation
    • …
    corecore