33 research outputs found

    Powder towpreg process development

    Get PDF
    The process for dry powder impregnation of carbon fiber tows being developed at LaRC overcomes many of the difficulties associated with melt, solution, and slurry prepregging. In the process, fluidized powder is deposited on spread tow bundles and fused to the fibers by radiant heating. Impregnated tows have been produced for preform, weaving, and composite materials applications. Design and operating data correlations were developed for scale up of the process to commercial operation. Bench scale single tow experiments at tow speeds up to 50 cm/sec have demonstrated that the process can be controlled to produce weavable towpreg. Samples were woven and molded into preform material of good quality

    NASA. Langley Research Center dry powder towpreg system

    Get PDF
    Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality

    Polymer infiltration studies

    Get PDF
    During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg - role of surface coating in braiding; prepregger hot sled operation in making tape from powder coated tow; ribbonizing powder-impregnated towpreg; textile composites from powder-coated towpreg - role of bulk factor in consolidation; powder curtain prepreg process improvements in doctoring of powder; and hot/cold shoe for ATP open-section part warpage control

    Polymer infiltration studies

    Get PDF
    Significant progress has been made during the past three months on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: powdered tow ribbonizing; unitape from powdered tow; customized towpreg for textiles and ATP; and textile composite research. During the period ahead research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be initiated in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, a major effort during the coming months will be participating in the analysis of the performance of the new solution prepregger

    Polymer infiltration studies

    Get PDF
    During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg; role of surface coating in braiding; prepregger hot sled operation; ribbonizing powder-impregenated towpreg; textile composites from powder-coated towpreg; role of bulk factor powder curtain prepreg process advanced tow placement (ATP) open-section part warpage control. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, during the period ahead work will continue on the analysis of the performance of the new solution prepregger

    Polymer infiltration studies

    Get PDF
    The preparation is reported of carbon fiber composites using advanced polymer resins. Current and ongoing research activities include: powder towpreg process; weaving, braiding and stitching dry powder prepreg; advanced tow placement; and customized ATP towpreg. The goal of these studies is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft

    Process for application of powder particles to filamentary materials

    Get PDF
    This invention is a process for the uniform application of polymer powder particles to a filamentary material in a continuous manner to form a uniform composite prepreg material. A tow of the filamentary material is fed under carefully controlled tension into a spreading unit, where it is spread pneumatically into an even band. The spread filamentary tow is then coated with polymer particles from a fluidized bed, after which the coated filamentary tow is fused before take-up on a package for subsequent utilization. This process produces a composite prepreg uniformly without imposing severe stress on the filamentary material, and without requiring long, high temperature residence times for the polymer

    Polymer Infiltration Studies

    Get PDF
    Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication

    Polymer infiltration studies

    Get PDF
    Progress was made in several areas on the preparation of carbon fiber composites using advanced polymer resins. Polymer infiltration studies dealt with ways of preparing composite materials from advanced polymer resins and carbon fibers. This effort is comprised of an integrated approach to the process of composite part fabrication. The goal is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft. The object is achieved through investigations at the NASA Langley Research Center and by stimulating technology transfer between contract researchers and the aircraft industry. Covered here are literature reviews, a status report on individual projects, current and planned research, publications, and scheduled technical presentations

    Apparatus and Method for Determining the Mass Density of a Filament

    Get PDF
    A method and apparatus for determining the mass density of a moving filament is provided. The method includes the steps of providing a filament across two supports, tensioning the filament. inducing a vibration into the filament segment between the supports, reinforcing the vibration using an amplified feedback signal, detecting the vibrational frequency data. processing the data using a fast-fourier transform analysis. and then displaying the frequency. The use of the feedback signal results in a self-tuning resonant loop. Open loop versions may also be used. The apparatus includes a base supporting a fixed support and a transducer which in turn supports a moveable support. The transducer vibrates the moveable support transversely to the direction of travel of the filament, thereby inducing a transverse vibrational mode. The output of the transducer is amplified and used to drive a second amplifier to produce a self-tuning resonant loop. In the open loop version a signal generator is used to drive the transducer through a frequency range, during which the amplitude peak is identified
    corecore