
O
..,_9
£O

-8
or3
©

>o

O

O
62

)

DEPARTMENT OF CIVIL ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529 //!/, :- ,_... . . r, /

//¢_V ¢

POLYMER INFILTRATION STUDIES

By

Joseph M. Marchello, Principal Investigator

Progress Report

For the period March 31, 1991 to September 15, 1991

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-l-1067

Robert M. Baucom, Technical Monitor

MD-Polymeric Materials Branch

(_) A q ;\_ L ,9_ ] ,_:p,70 _},) pr)L yMr: _, [NFILIRAII{-N

}T!jT_i"., i'ro,:r)'bs °q'_orL) %1 ;4af. - 19 b_'p.

lC,'-_] (r_ld tominion univ.) 7% P CSCL llC

_: _IL 7

September 1991

https://ntrs.nasa.gov/search.jsp?R=19910021019 2020-03-19T17:00:26+00:00Z



DEPARTMENT OF CIVIL ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

POLYMER INFILTRATION STUDIES

By

Joseph M. Marchello, Principal Investigator

Progress Report

For the period March 31, 1991 to September 15, 1991

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-l-1067

Robert M. Baucom, Technical Monitor

MD-Polymeric Materials Branch

)
o

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

September 1991



POLYMER INFILTRATION STUDIES

SUMMARY

Significant progress has been made during the reporting period on the preparation

of carbon fiber composites using advanced polymer resins. The results are set forth in

recent reports and publications, and will be presented in forthcoming national and

international meetings.

Current and ongoing research activities reported herein include:

- LaRC Powder Towpreg Process

- Weaving Towpref made from Dry Powder Prepreg

- Composite from Powder Coated Towpreg: Studies with Variable

Tow Sizes

- Toughening of PMR Composites by Semi-Interpenetrating Networks

Research during the period ahead will be directed toward several important areas

of polymer infiltration into fiber bundles. Preparation of towpreg for textile preform

weaving and braiding and for automated tow placement is a major goal, as are the

continued development of prepregging technology and the various aspects of composite

part fabrication.
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I. Introduction

Polymer infiltration studies during the period have focused on ways of preparing

composite materials from advanced polymer resins and carbon fibers. This effort is

comprised of an integrated approach to the process of composite part fabrication.

The goal of these investigations is to produce advanced composite materials for

automated part fabrication utilizing textile and robotics technology in the manufacture of

subsonic and supersonic aircraft. This objective is achieved through research

investigations at NASA Langley Research Center and by stimulating technology transfer

between contract researchers and the aircraft industry.

The sections of this report cover the July Peer Review presentation on the

composites program, status reports on individual projects, current and planned research,

and publications and scheduled technical presentations.
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II. July 1991 Peer Review

This section summarizes the current and future activities in polymer infiltration

and composite materials preparation as presented to the visiting Peer Review Committee

on July 24, 1991. The following viewgraph presentations highlight the important features

of the project and serve to introduce project status reviews given in subsequent sections

of the report.
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I I I. Weaving Towpreg Made from Dry Powder Prepregging Process

Maylene Hugh August 16, 1991

Introduction

This study investigates the weavability of dry polymer powder coated fibers

and the effects of varying yarn bundle sizes on the mechanical properties of the

woven cloth. The fibers used are G30-500 (BASF) and AS-4 (Hercules) carbon fibers

in tow bundles of 3k, 6k, and 12k filaments. Weaving protocol will be developed for

carbon fibers impregnated with a thermoplastic polymer, LaRC-TPI. Once the

weaving protocol has been established, a thermosetting polymer, PR-500, will be

made into t0wpreg and then woven.

Powder Prepregging

The powder prepregging process involves three steps: spreading of the tow,

deposition of polymer onto the spread tow, and fusion of the polymer onto the

fibers. A carbon fiber tow bundle is pneumatically spread to approximately 3 inches

in width. The fibers are then impregnated by means of a dry, recirculating, fluidized

powder chamber. Radiant heating is used to obtain particle-tow fusion. A

thorough description of the system and the design relations developed for it can be

found in Reference 1. The current system has been upgraded for prepregging

operations at speeds of 30 - 40 ft/min.

Weaving

A weaving protocol is being established for dry LaRC-TPI powder and carbon

fiber prepreg. The initial work has been performed on yarns containing 6k

filaments. Various aspects, such as yarn shape, flexibility, twist, and damage, are

being investigated to determine the weavability of the current state of the towpreg.

The set-up of the loom and the weaving of the towpreg is being examined for ways

to minimize damage imparted to the woven towpreg.

The first weaving trial involved 6k tow bundles. The towpreg was rewound

onto 36 separate stx)ols in order to produce a balanced 3" wide fabric with 12 picks

per inch (ppi). Two rewinding machines were used to determine how best to

rewind towpreg.

The spools of rewound towpreg were loaded into the loom. Initial weaving

efforts revealed problems with loose fiber accumulation in the heddles and comb.

Twisting the towpreg at 15 twists/meter has not appeared to have overcome this

difficulty. It is planned to investigate hot ribbonizing combined with twisting as a

means of reconsolidating the loose fibers into the tow bundle. 3" and 6" wide 8-

harness satin cloth will be made for mechanical testing.



Mechanical Test Program

The mechanical tests that are being done for this study will compare

unidirectional laminates to [0o/90 °] laminates to consolidated panels of 8-harness
satin cloth. The effects of tow bundle size within these laminates will be

determined by obtaining short beam shear strength and flexural strength and

modulus. In addition, the transverse flexural strength will be used to compare tow

bundles in unidirectional materials. Compression strengths will be tested in the

woven cloths to determine the effects of tow bundle size on the degree of crimp.

Towpreg made from 3k and 6k G30-500, and 12k AS-4 filaments have been

frame-wrapped into unidirectional panels to obtain the flexural strength and

modulus, the transverse flexural strength and modulus, and the short beam shear

strength. The data is shown on Table 1. The 3k and 12k transverse flexural data is

forthcoming. Because of the low values obtained for the 6k material, the

mechanical tests are being redone.

Reference

[1] R. M. Baucom and J. M. Marchello, SAMPE Quarterly, Vol. 21, No. 4, pp. 14-

19, July 1990.



Table 1. Mechanical Property vs. Yarn Bundle Size

Mechanical

Properties

Short Beam

Shear Strength
(ksi)

Flexural Strength

(ksi)

Flexural Modulus

(Msi)

Transverse

Flexural Strength
(ksi)

Yarn Bundle Size

3k, Wfiber* 6k, Wf 12k, Wf

16.0, 64.0% 9.8, 67.6% 13.7, 68.9%

226.6, 60.0% 188.8, 62.4% 239.1, 63.8%

16.3, 60.0% 15.3, 62.4% 14.6, 63.8%

16.8, 60.0% 15.3, 61.9% 22.0, 64.0%

* The fiber weight percentage was determined by acid digestion method.
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I. Abstract

The frequency spectra of vibrating samples of towpreg coated with

thermoplastic polymers were analyzed to determine the resin content of the

samples. According to theory, the behavior of the vibrating towpreg should

approximate that of a vibrating string with constant mass density, in
accordance with the standard string equation. The results of current

experiments show that the method, with calibration, is capable of fixing the

resin content to within 10% absolute accuracy.

I1. Introduction

Thermoplastic composites offer the potential of good toughness and

attractive mechanical properties at elevated temperatures. The LaRC Dry

Powder Towpreg System utilizes a promising approach to combine

thermoplastics with continuous fiber tows. Continuous monitoring of the powder

coating operation is essential to ensure a uniform product. The purpose of the

resin content monitor is to continuously determine the amount of resin present

in a given on-line sample of towpreg. The objective of this project is to

construct, calibrate, and demonstrate a resin content monitor using the

principle of free vibration.

The principle of free vibration hypothesizes that vibrating towpreg behaves

much in the same manner as a vibrating string. Thus, the frequency spectrum

of the towpreg was analyzed in response to an induced vibration, and its mass

density was determined through use of the standard string equation. From

basic physics, we have an equation for the first harmonic vibrational frequency

of a given string:

f= (1/2L) (T/m)^(1/2)

f = frequency (hz)

L = length (cm)

T = Tension (dyne)

m = mass density (g/cm)

Given a piece of towpreg with known length and under a constant known

tension, the mass density can then be calculated based on the frequency

response.
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III. Materials

A wide variety of polymer coated towpreg samples were obtained from the

NASA Langley Prepregging Lab. All of the samples tested were 12K strands,

and a variety of polymers (LARC TPI, PEKK) were tested.

IV. Experimental

The towpreg samples were mounted on the experimental vibrational resin

content monitor apparatus as is shown in fig. 1. Vibrations in the vertical plane

are induced by single manually triggered pulses from an electromagnetic

shaker, which is driven by a pulse generator and power amplifier. The

towpreg is displaced approximately 2mm by the shaker. The vibrating towpreg

then triggers an optical switch (an OPTEK wide gap slotted optical switch

model#OPB800W) that utilizes an infrared diode capable of high speed

switching. The output signal from the optical switch is sent to an oscilloscope

and a frequency spectrum analyzer. The wave form is that of a damped

harmonic oscillation. The frequency spectrum decomposition yields a

characteristic peak at the frequency of the first harmonic of the vibrating

towpreg. (See fig.2)

While the purpose of this project is to validate vibrational monitoring as a

means of accurately determining resin content, it is first necessary to

accurately fix the resin content of the samples to be studied by the new

technique. The prepregging lab weighs 5 ft. lengths of towpreg and then

determines the resin content by comparing that weight to a table. In order to

validate those results, I independently weighed smaller lengths (approx. 50cm)

of the samples for which the prepregging lab had already fixed the resin

content. The mass density was then calculated based on this weight and a

accurate measurement of the sample length. This mass density was then fitted

to a curve of mass density vs. resin content, based on a plot of the table used

by the prepregging lab.

The studies of the vibrational resin content monitoring technique had two

parts. An initial study focused its attention on demonstrating the theory that the

towpreg behaves similar to a vibrating string. There were three basic

components to this initial study: the length effect, the mass effect, and the

tension effect. The numeric and plotted results of these tests are given in fig. 3.



Further tests concentrated on developing a calibration curve of resin content

versus frequency response for a variety of towpreg lengths. These curves

were generated from data taken on a series of samples of known resin content,

with each curve representing a single towpreg length. Later studies focused

on developing static calibration curves at different lengths.

V. Results and Discussion

Static Test Results

The initial experiments focused on supporting the theory that the vibrating

towpreg does in fact behave much in the same way as a vibrating string. To

accomplish this, three different effects were studied. The first series of tests

were intended to prove the linear dependence of the frequency response on

the length of the sample. According to the string equation, the frequency is

proportional to the inverse of the length of the sample. A plot of data taken over

a range of lengths between 16cm and 36cm provided ample evidence that this

holds true. The second group of tests looked at samples of towpreg with a

range of mass densities; this was accomplished by subdividing a single tow

into several pieces. The string equation tells us that the frequency is inversely

proportional to the square root of the mass density. For the samples tested,

those with the higher mass density consistently responded at a lower

frequency, as predicted. The third, and final, series of initial tests studied the

dependence of the frequency on the tension applied to the towpreg samples.

The frequency response of the towpreg samples was shown to be directly

proportional to a root power of the tension, as predicted by theory. It remains to

be established that the frequency is proportional to the square root of the

Tension, as dictated by the string equation. In each of the three initial tests, the

frequency of the vibrating towpreg was shown to vary with the expected

parameters, but with slightly different functional dependences. Thus,

according to the results obtained, the towpreg follows the general behavior of

a string, but does not exactly fit the string equation. Thris is believed to be due

to the stiffness of the polymer coated towpreg.

Once the initial tests proved that the towpreg behaves much like a string,

static calibration curves were constructed at several lengths to determine resin

content directly from the frequency response. These calibration curves were



Once the initial tests proved that the towpreg behaves much like a string,

static calibration curves were constructed at several lengths to determine resin

content directly from the frequency response. These calibration curves were

based on testing samples of known resin content; two curves were developed

for each length due to the two different methods of fixing known resin content.

These two methods of determining resin content lead to different values for the

resin content of the same sample of towpreg. A plausible explanation for this

difference is that my method uses a shorter sample, which would tend to point

out local irregularities in resin content. However, I prefer to use my values for

known resin content, because I determine the resin content of each sample that

is tested on the vibrational monitor by directly weighing and measuring that

sample. The calibration curves were used to predict the resin content, based

on vibrational analysis, of several samples of unknown resin content with an

error between 2.3% and 14%. These samples were tested using the static

calibration curves for lengths of: 20 cm, 30 cm, and 32.5cm. An example of the

calibration curves used and the results of the tests on the samples of unknown

resin content is in Fig. 4. An alternate form of calibration curve plots mass

density versus frequency and then uses another table to convert mass density

to resin content, based on the known mass density of a clean piece of tow.

Dynamic Test Results

The dynamic tests of the vibrational resin content monitor were intended

to accomplish two goals: First to determine if the apparatus would work under

dynamic conditions and second tb note modifications that will have to be made

to the apparatus in order to obtain acceptable frequency spectra data. The

frequency response data obtained (Fig. 5) showed some correlation between

frequency and resin content, and the results followed a form similar to the static

calibration. The sources of error can be explained by the inherent problems in

using this current apparatus for dynamic testing. The main contributors to the

scattering of the data are as follows: loose rollers(caused vertical translation of

tow which varied with tow speed), poor optical switch alignment (difficult to

obtain clear peaks in frequency spectra), speed of tow causes variation in

tension under current conditions, and triggering of shaker and capture of

waveform difficult to achieve due to lack of an external trigger on apparatus.

All of these problems have fairly simple solutions. The loose rollers can be

replaced with new ones that are designed to hold the tow stable and guide it to



alignment with the optical switch. The optical switch alignment can be

improved by carefully designing the new rollers and possibly using a motorized

drive to track the switch along with the tow. The speed effect on the tow tension

can be reduced by introducing rollers that hold the tow at constant tension at

the nodes. Finally, an external trigger can be arranged to capture the damped

harmonic waveform at the proper time. These modifications will enable the

monitor to be used to create dynamic calibration curves from which a test of

unknowns (such as in the static testing) can be completed. This will clearly

reveal the potential of the monitor to be used continuously on the running

prepregging line.

Vl. Conclusion

The primary objective of this project was to establish the validity of the

hypothesis that towpreg will behave like a classical vibrating string, and verify

that vibrational resin content monitoring is possible. Based on the results

obtained from tests using the vibrational technique of monitoring resin content,

it can be concluded that the initial hypothesis is valid and that it is possible to

utilize frequency response analysis as a means of monitoring resin content.

The results of the dynamic tests show that modifications will have to be made to

the apparatus, but that the vibrational technique will work on a towpreg

production line. Despite the fair accuracy of the monitor apparatus at this point,

the technique of vibrational analysis is, however, of use to the dry powder

prepregging line, in that it is of value to regulate the line even if the absolute

accuracy of the monitor is only fair. Currently, the technique is capable of

fixing resin content (under static testing) with an absolute error of between 2.3%

and 14% (see Fig. 4, column rc pr. -rc / rc). It is worthwhile to note that the

deviation between the resin content values calculated by the prepregging lab

and my own mass density method are between 6.3% and 13.5% for the same

towpreg samples (see Fig. 4, column rcl-rc / rcl). Thus, the vibrational

technique is capable of fixing the resin content at least to the same degree of

absolute accuracy as the current weighing technique. Thus, vibrational resin

content monitoring holds promise for enabling continuous monitoring of the

production of towpreg by the dry powder prepregging line.
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V. SEMI-IPN TOUGHENING OF PMR - TYPE COMPOSITES

Following safety concerns about MDA, a diamine used in PMR-15, a
less toxic alternative designated RP46 has been developed at NASA
Langley Research Center (1). This report details the efforts in
developing the full potential of RP46 in composite applications across
a broad spectrum of application regimes.

A, Development of Prepregs and Composites

The first task undertaken in taking the resin from the test tube to the
composite, was to develop high quality prepreg. To this end, RP46
resin solutions of differing concentrations were carefully synthesized
and characterized, with respect to various parameters such as density
and viscosity. These were prepregged and processed into laminates
of different thicknesses and layups.Temperature, pressure and bleed
times were optimized to produce laminates with a maximum void
content of 1 percent. An insitu high temperature soak cycle was
developed to eliminate the long, free standin_l postcure associated
with these systems (Figure 1). Extenswe volume fraction
measurements of these laminates were undertaken using the
chemical digestion method. These results, summarized in Table 1,
were used to determine optimum prepregging and consolidation
conditions for producing laminates with fiber volume fractions of
approximately.60 ercent (_+2 p.ercent) and. void volumes of less than
1 percent. S_mi_ar benchmarklng studies on PMR-15 were also
conducted, in order to effect a comparison of mechanical properties.

All materials were impregnated using the drum winding technique.
Though this apparatus has been described previously (2), a brief
descnption of the process is outlined. An IM - 7 (12K, unsized) fiber
tow from a free spinning unwinding creel, passed between two tension
bars and onto guide spools (that aligned the fiber) before it entered a
sealed resin reservoir. Within the reservoir, the fiber tow passed
through the impregnating solution over an assembly of rollers. These
served to spread the fibers as it was being impregnated and ensured
complete wetout. The tow exited the reservoir through a stainless
steel die that squeezed the resin solution through the fiber tow,
metered the amount of resin on the fiber and shaped the thickness
and width of the impregnated tow. This tow was wound on a 2.5 feet
diameter drum backed with a trifluroethylene polymer release film.
The entire creel - guide roll - reservoir assembly was maintained on a
moving track whose translational speed was adjusted such that the
impregnated tow wound on the drum to provide a continous gap-free
prepreg. A typical run yielded a 35 square foot sheet of prepreg.



PMR - type resin composites are characterized by low damage
tolerance and toughness. While there are several general techniques
for toughening of thermosetting resins for composite applications, the
present approach relies on toughening by chemical means. In order
to be effective, the toughening agent must have a Tg close to the
processing (crosslinking) temperatures of both PMR - _15 and RP46,
so as to not appreciably lower the use temperatures of the composite
systems and yet be co-processible with them to fabricate tough
composites. A controlled creation of a tough thermoplastic / PMR
semi- IPN at the ply - to - ply interface is therefore likely to provide
toughness to the resulting composite without substantial loss of high
temperature capability. Matnmid 5218 (Ciba Geigy) is a tough
thermoplastic polyimide with a Tg of 315 ° C - 325 ° C, a range
compatible with PMR - type composites. It is stable for prolonged
periods at the processing temperatures. A DSC scan of the 5218
powder indicated a T of about 320 o C. Further, Matrimid 5218 isg.
physically compatible w0th the base resins at elevated temperatures,
and prowdes good quality, void-free laminates.

Matrimid 5218 was supplied as fully imidized flakes and was ground to
a fine powder using a Retsch Grinder. The particle size distribution is
shown in Figure 2. in order to obtain large quantities of controlled,
semi - 2 !PN PMR - 15 and RP46 prepreg, several impregnation
technolognes were evaluated. This resulted nn the development of a
reproducible, quantitative technique for powder coating prepregs
during impregnation, for which a patent disclosure has been filed. In
this technique, the 5218 powder was metered onto the wet tow during
the impregnation step. This was achieved by mounting a powder filled
conical hopper fitted with a central stirrer rod just above the tow as it
wound around the drum. An elastomeric nipple was fitted to the
hopper at the exit port.. The 5218 powder dispensed onto the prepreg
was metered by adjusting the annulus between the stirrer rod and the
nipple, which could be vaned by choosing among several sized
nipples. This arrangement is depicted in Figures 3 and 4. In order to
effect a suitable comparison with baseline properties of PMR - 15 and
RP46 composites, the resin content of the prepregging solution was
adjusted to provide a total resin volume content of 40 percent in both
the toughened and non - toughened postcured composites. The 5218
powder metered on the prepreg was approximately 12 percent by
weight of the total resin content of the B - staged prepreg. The 5218
powder coalesced / reacted during lamination to give a vo0d free resin
layer at the ply interfaces. An SEM photomicrograph of the powder
coated RP46 prepreg is shown in Figure 5.

i



The solution wound prepreg was permitted to remain on the drum for
several hours to allow most of the methanol to evaporate. The
prepreg was then cut into suitable sizes and B - staged in an air oven
at 200 ° C for one hour to remove residual solvent and initiate the
chemical reaction to the preimidized polymer. The prepreg was then
cut and stacked in the desired layup and thickness, backed with XK 22
release agent coated Kapton films and placed in a matched - metal
mold. In order to eliminate batch - to - batch variations, pieces of
prepreg from several batches were incorporated in each laminate.
The mold was placed between the platens of a 50 ton four - post
upacting press and subject to the cure cycle prescribed in Figure 1. All
panels were scanned ultrasonically so as to ensure defect - free
laminates for the mechanical testing. The Tgs of the cured laminates,
detected by TMA runs, were as follows •

PMR- 15" 325 o C
Toughened PMR - 15 • 290 ° C

RP 46" 325 o C
Toughened RP46 • 285 °C.

B, Mechanical Characterization of PMR - tyoe Comoosites

This section presents the mechanical test results of the baseline PMR
- 15 and RP46 composites and the 5218 toughened PMR - type
composites. In addition to toughness data, a comprehensive
engineering property profile evaluation of all systems was undertaken
in order to understand the trade - offs involved with the toughening of
PM R - type polyimide resins. The test matrix employed in this study is
given in Table 2. Table 2 also provides the laminate layups, sample
dimensions and test conditions employed for each of the laminate
level property determinations. End - tabbed samples were bonded
with 0 / 90 balanced fiberglass laminated end - tabs (G - 10, from Reed
Plastics) using Hysol 9309 adhesive. Wherever called for,
commercially available room temperature strain gages from
Micromeasurements Inc. were employed. All tests were performed in
accordance with standardized procedures (ASTM, SACMA).

Figures 6 - 10 depict the mechanical properties of all four systems.
The error bars represent one standard deviation from the mean. The
flexural strengths of the toughened systems were lower than those of
the untoughened systems by 15 - 20 percent. However the flexural
strength of the toughened RP46 composite was only marginally lower
than that of the PMR - 15 composite, as the RP46 systems showed
greater flex strengths than their PMR - 15 counterparts. Flexural
modulus like the strength, showed moderate decline with the



incorporation of 5218 toughener for both systems. The failure
deflection, a measure of toughness in flexure, showed an increase
with the addition of toughener. Short Beam Shear strength was also
seen to decrease with the incorporation of 5218 toughener.

Unidirectional laminate tensile properties (strength, failure strain and
modulus) for all systems were consistent with rule - of - mixtures
expectations of IM - 7 fiber based composites. Compression strength
declined modestly (,.. 5 percent) in toughened systems, while failure
strain increased. RP46 based composites showed higher
compressive strength values than the PMR - 15 based composites.
The compressive modulus was unaffected by toughening. Data
scatter in transverse tension data was seen to be high, reflective of
internal random flaw dominated behavior. No clear corelations
emerged from either strength or ultimate strain data. Modulus values
were considerably lower than expected values from similar tests on
epoxy / PEEK materials.

Inplane shear strength values were seen to decrease by
approximately 15 percent in toughened samples, while modulus
values were lower by 10 percent. Compressive properties of quasi -
isotropic samples were determined by short block compression tests.
Toughening depressed compression strength by 10 - 15 percent,
without affecting modulus or ultimate strain values.

Mode I and II fracture toughness values were determined by DCB and
ENF specimens respectively . Though the initiation values are
influenced by the thickness of the starter flaw, both Mode I and II
initiation fracture toughness values increased with the addition of
5218. Likewise, steady state Gc values in both Mode I and II increased
in the toughened states. RP46 composites showed higher toughness
than PMR - 15 composites in initiation and steady state Gc values in
both Mode I and I1. Initiation Gc values were higher than steady state
Gc values in Mode II, but lower in Mode I. While toughening increased
steady state Mode I and Mode II Gc only modestly (20 - 25 percent),
the most dramatic improvement was seen in Mode II initiation Gc
values

C. Morphological Considerations

Studies were undertaken to determine the morphology of the
toughened PMR -15 and RP46 composites. Extensive SEM
observations of fractured surfaces in both the toughened composites
showed a single phase material. The fracture surfaces were quite
tortous, with grooves, holes and matrix lacerations, but even extensive



tilt operations in the SEM did not reveal two seperate phases as may
be expected from a combination of thermoplastic and thermoset
matrices. No evidence of a film or phase was evident at the ply - to -
ply interfaces. Fracture surfaces showed evidence of good fiber
resin adhesion. Thermomechanical runs (TMA) on toughened PMR
15 and RP46 laminates showed only a single transition, reflective of a
single phase morphology.

Attempts were made to leach out the thermoplastic 5218 resin in both
toughened composites. Composite samples were placed in contact
with solvents known to dissolve 5218, such as, methylene chloride,
chloroform, dioxane, dimethyl formamide, cyclohexanone, dimethyl
acetate and N - methyl pyrolidone, for varying periods of time upto 48
hours. No appreciable weight changes were noted. SEM
observations also failed to reveal any leached polymer.

From these observations the morphological picture (of the toughened
composites) that emerges is that of a single phase semi -
interpenetrating morphology. Given the conditions of laminate
fabrication (stacking of PMR - 15 / RP46 prepreg pieces coated with
5218 powder), this leads to several interesting conclusions on the
morphology developed in such samples. During the cure cycle, the
thermosettmg component (PMR - 15or RP46) continously increases
molecular weight by crosslinking, while the thermoplastic component
(5218) remains relatively chemically inert. This process of cure in the
thermosets is accompanied by a viscosity profile that initially
decreases with time (due to the rising.temperatures) until a trough is
reached, after which the viscosity tncreases (due to tncreaslng
molecular weight weight buildup). The 5218 component however, has
been processed to a desired molecular weight distribution prior to
incorporation in the prepreg, and hence, initia!ly, has a much higher
viscosity than the thermosetting component. It ts therefore reasonable
to presume that the formation of the single phase semi - IPN
morphology is initiated by the flow of the PMR - 15 / RP46 component
into the 5218 dominated region at each ply - to - ply interface. Since
this is a diffusion phenomenon, the interface regton is likely to be
marked a concentratton radient, with 5218 and thermoset dominated
regions at each end gnd a varying concentration in between.
However, since the miscibility of the two components is excellent over
the entire range (in this case 0 - 12 percent), no phase segregation
occurs, and a single phase semi - IPN morphology is observed.

From a mechanical standpoint, a key requirement for toughness in a
composite, is the suppression of delamination, which is a local or
global seperation of adjacent plies in a laminate. Thus it is critical to
selectively toughen the ply - to - ply interface where the stresses are



uite high. While a purely tough thermoplastic interleaf may toughen
e interface, the resulting composite can be vulnerable to attack by

solvents. A semi - IPN at the ply - to - ply interface (with a tough
thermoplast!c), is likely to provide not only improved toughness and
solvent reststance, but also better fatigue endurance and creep
resistance, due to enhanced chemical crosslinks that hold the polymer
chains together. In this manner, by localizing the toughening agent at
the most desired location and by providing crosslinked semi - IPN
morphologies, toughening of the bulk resin is avoided, considerably
alleviating cost, processing and elevated temperature property
problems as well as prowding potential for enhanced solvent
resistance, creep and fatigue properties.

D, Conclusions

A manufacturing science outline for the scale up of composites with
experimental resin systems has been developed. Careful control of
the resin solids content in prepregging solutions, (monitored by
solution viscosity), can lead to laminates with controlled volume
fractions of resin and fiber. An effective, alternate cure cycle has been
devised for PMR - type composites. Based on the results of this
methodology, approximately 50 laminates (of different thicknesses
and layups)were manufactured with Vf ---60 percent (+2 percent) and
a void content of ~ 1 percent, for a comprehensive study of the
engineering properties of such systems.

The inherent flexibility of the ether link in 3,4' ODA apparently imparts
better flow characteristics and moderately higher toughness to RP46
composites as compared to PMR - 15 composites. This increased
toughness is obtained at no sacrifice in engineering strengths and
stiffnesses. These factors combined with the lower health risks
associated with 3,4' ODA provide an attractive combination of
properties for high temperature aerospace and aeroengine
applications, including replacement of the PMR - 15 market.

A methodology for selectively toughening ply - to - ply interfaces in
PMR - type composites using gradated semi - IPN morphology has
been outlined. PMR - 15 and RP46 composites toughened by 5218,
show enhanced toughness with small attendant dropoffs in
engineerin_l strength and stiffness. Such toughened systems can be
processed into thick, multiangle composites with ease.

"t-
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VI. Current and Planned Research

Research during the coming year will be directed toward several important areas

of polymer infiltration into fiber bundles. These efforts include:

a study to establish the parameters for weaving carbon fibers impregnated

with dry polymer powder. Previous weaving studies have dealt with

towpreg flexibility and adhesion of powder particles. During the coming

year, the optimal weaving protocol will be established and bulk factor and

mechanical properties obtained.

an investigation of towpreg ribbon customization for advanced tow

placement. These activities will be directed toward preparation of

powdered tow for robotic towpreg ribbon placement during aircraft part
fabrication.

assembly and operation of a second powder prepreg line to expand the

research effort and provide the capability for preparing composite test

samples from small quantities of new research resins and advanced
materials.

assist in the installation, testing, and operation of a six-inch prepreg

machine being purchased by NASA. The machine is under construction

and will be delivered in January 1992. This new experimental machine will

be invaluable in research on new ways of conducting polymer infiltration of
fiber bundles.

The following table itemizes current project activities of the composite group.

The major emphasis is on powder impregnation, frame winding of towpreg,

consolidation, and quality control.
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VII. Publications and Presentations

A recent publication and abstracts of papers to be presented are:

Joseph M. Marchello and Robert M. Baucorn, "LaRC Powder Towpreg Process,"

Transactions of the 36th International Symposium, pp 68-80, San Diego, CA, April

15-18, 1991.

Maylene K. Hugh, Joseph M. Marchello, Janice Maiden, and Norman J. Johnston,

"Weaving Towpreg Made from Dry Powder Prepregging," to be presented at the

Fiber-Tex Conference, North Carolina State University, October 15-17, 1991.

Maylene K. Hugh, Joseph M. Marchello, Robert M. Baucom and Norman J.

Johnston, "Composites from Powder Coated Towpreg: Studies with Variable Tow

Sizes," to be presented at the 37th International SAMPE Symposium, Anaheim,

CA, March 9-12, 1992.

N. J. Johnston, K. Srinivasan, and R. K. Pater, "Toughening of PMR Composites

by Semi-Interpenetrating Networks," presentation to be determined, 1992.
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WEAVING TOWPREG MADE FROM DRY POWDER PREPREGGING

PROCESS

Maylene K. Hugh, Joseph M. Marchello, ODU / NASA Langley"

]anice Maiden, Textile Technologies, Inc.

Norman J. Johnston, NASA Langley

A study was conducted to establish the parameters for weaving 3k, 6k,

and 12k carbon fiber impregnated with LaRC-TPI dry powder. The resulting

eight-harness satin broad goods were fabricated into test specimens to

determine mechanical properties.

Previous studies for weaving the dry powdered tows dealt with tow

flexibility and adhesion of powder particles to carbon fiber. Manipulation of

the thermal treatment step in the prepregging process enabled successful

control over these two variables. Abrasion and fiber damage during weaving

were unresolved matters. In this investigation, tow bundle twisting was used

to reduce the separation of filaments, tow-to-tow abrasion, and fiber loss.

Optimal weaving protocol was established and bulk factor and

mechanical property data were obtained for the consolidated woven material.

Utilization of appropriate textile techniques for composites processing is an

important factor for automating the production of quality composite parts

from powdered towpreg.
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Abstract

Part fabrication from composite materials usually costs less when larger fiber tow

bundles are used. On the other hand, mechanical properties generally are lower for
composites made using larger size tows. This situation gives rise to a choice
between costs and properties in determining the best fiber tow bundle size to
employ in preparing prepreg materials for part fabrication.

To address this issue, unidirectional, bidirectional, and eight harness satin

composite specimens were fabricated from powder-coated 3k, 6k, and 12k carbon
fiber reinforced LaRC-TPI towpreg. Short beam shear strengths and longitudinal
and transverse flexure properties were obtained. Knowledge of the variation of
properties with tow size may serve as a guide in material selection for part
fabrication.



TOUGHENING OF PMR COMPOSITES BY
SEMI- INTERPENETRATING NETWORKS
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ABSTRACT

Polymer composites are increasingly being required to operate for
prolonged durations at high temperatures. In the past, the material
of choice for most elevated temperature applications was PMR - 15,
even though it suffered from two major drawbacks : brittleness and
component toxicity. Recently, there have been increased efforts
devoted to synthesizing and characterizing new, non - toxic
polymers capable of withstanding high temperatures for long
periods. Several such organic polymers have been investigated.
One such potential PMR - 15 replacement is LaRC RP46. Further,
to improve the damage tolerance of PMR - type resin systems, an
attempt has been made to develop a semi - Interpenetrating
Network (semi - IPN) at ply interfaces by utilizing a tough
thermoplastic resin. Matrimid 5218 (Ciba Geigy) is a tough
thermoplastic polyimide with a Tg of 315 o C - 325 o C, a range
compatible with PMR - type composites. A controlled creation of a
5218 / PMR semi - IPN at the ply - to - ply interface is therefore likely
to provide toughness to the resulting composite without substantial
loss of high temperature capability.

PMR - 15 and RP46 prepregs were drum wound using IM - 7 fibers.
Prepregging and processing conditions were optimized to yield good
quality laminates with fiber volume fractions of 60 percent (+ 2
percent). Samples were fabricated and tested to determine
comprehensive engineering properties of both systems. These
included 0° Flexure, Short Beam Shear, Transverse Flexure and
Tension, 0 ° Tension and Compression, Intralaminar Shear, Short
Block Compression, Mode I and II Fracture Toughness and
Compression After Impact properties. Semi - 2 - IPN toughened
PMR - 15 and RP46 laminates were also fabricated and tested for
the same properties.






