8,758 research outputs found

    The Torsion of Members Having Sections Common in Aircraft Construction

    Get PDF
    Within recent years a great variety of approximate torsion formulas and drafting-room processes have been advocated. In some of these, especially where mathematical considerations are involved, the results are extremely complex and are not generally intelligible to engineers. The principal object of this investigation was to determine by experiment and theoretical investigation how accurate the more common of these formulas are and on what assumptions they are founded and, if none of the proposed methods proved to be reasonable accurate in practice, to produce simple, practical formulas from reasonably correct assumptions, backed by experiment. A second object was to collect in readily accessible form the most useful of known results for the more common sections. Formulas for all the important solid sections that have yielded to mathematical treatment are listed. Then follows a discussion of the torsion of tubular rods with formulas both rigorous and approximate

    Elastic Instability of Members Having Sections Common in Aircraft Construction

    Get PDF
    Two fundamental problems of elastic stability are discussed in this report. In part one formulas are given for calculating the critical stress at which a thin, outstanding flange of a compression member will either wrinkle into several waves or form into a single half wave and twist the member about its longitudinal axis. A mathematical study of the problem, which together with experimental work has led to these formulas, is given in an appendix. Results of test substantiating the recommended formulas are also presented. In part two the lateral buckling of beams is discussed. The results of a number of mathematical studies of this phenomenon have been published prior to this writing, but very little experimentally determined information relating to the problem has been available heretofore. Experimental verification of the mathematical deductions is supplied

    Ab initio wavefunction based methods for excited states in solids: correlation corrections to the band structure of ionic oxides

    Full text link
    Ab initio wavefunction based methods are applied to the study of electron correlation effects on the band structure of oxide systems. We choose MgO as a prototype closed-shell ionic oxide. Our analysis is based on a local Hamiltonian approach and performed on finite fragments cut from the infinite solid. Localized Wannier functions and embedding potentials are obtained from prior periodic Hartree-Fock (HF) calculations. We investigate the role of various electron correlation effects in reducing the HF band gap and modifying the band widths. On-site and nearest-neighbor charge relaxation as well as long-range polarization effects are calculated. Whereas correlation effects are essential for computing accurate band gaps, we found that they produce smaller changes on the HF band widths, at least for this material. Surprisingly, a broadening effect is obtained for the O 2p valence bands. The ab initio data are in good agreement with the energy gap and band width derived from thermoreflectance and x-ray photoemission experiments. The results show that the wavefunction based approach applied here allows for well controlled approximations and a transparent identification of the microscopic processes which determine the electronic band structure

    Spatial fluctuations in an optical parametric oscillator below threshold with an intracavity photonic crystal

    Get PDF
    We show how to control spatial quantum correlations in a multimode degenerate optical parametric oscillator type I below threshold by introducing a spatially inhomogeneous medium, such as a photonic crystal, in the plane perpendicular to light propagation. We obtain the analytical expressions for all the correlations in terms of the relevant parameters of the problem and study the number of photons, entanglement, squeezing, and twin beams. Considering different regimes and configurations we show the possibility to tune the instability thresholds as well as the quantumness of correlations by breaking the translational invariance of the system through a photonic crystal modulation.Comment: 12 pages, 7 figure

    Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals

    Full text link
    There is a number of explicit kinetic energy density functionals for non-interacting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the laplacian of the electron density to work with an infinite set of kinetic energy densities. For all the functionals but one we have found that their success in the evaluation of the total kinetic energy are due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure

    A Liquid Model Analogue for Black Hole Thermodynamics

    Get PDF
    We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.Comment: 20 pages and 6 Encapsulated PostScript figure

    Thermodynamical Scaling of the Glass Transition Dynamics

    Full text link
    Classification of glass-forming liquids based on the dramatic change in their properties upon approach to the glassy state is appealing, since this is the most conspicuous and often-studied aspect of the glass transition. Herein, we show that a generalized scaling, log tau proportional to T^(-1)V^(-gamma), where gamma is a material-constant, yields superpositioning for ten glass-formers, encompassing van der Waals molecules, associated liquids, and polymers. The exponent gamma reflects the degree to which volume, rather than thermal energy, governs the temperature and pressure dependence of the relaxation times.Comment: 12 page, 4 figure

    Gaussian density fluctuations and Mode Coupling Theory for supercooled liquids

    Full text link
    The equations of motion for the density modes of a fluid, derived from Newton's equations, are written as a linear generalized Langevin equation. The constraint imposed by the fluctuation-dissipation theorem is used to derive an exact form for the memory function. The resulting equations, solved under the assumption that the noise, and consequently density fluctuations, of the liquid are gaussian distributed, are equivalent to the random-phase-approximation for the static structure factor and to the well known ideal mode coupling theory (MCT) equations for the dynamics. This finding suggests that MCT is the canonical mean-field theory of the fluid dynamics.Comment: 4 pages, REVTE

    Two-particle photoemission from strongly correlated systems: A dynamical-mean field approach

    Full text link
    We study theoretically the simultaneous, photo-induced two-particle excitations of strongly correlated systems on the basis of the Hubbard model. Under certain conditions specified in this work, the corre- sponding transition probability is related to the two-particle spectral function which we calculate using three different methods: the dynamical-mean field theory combined with quantum Monte Carlo (DMFT- QMC) technique, the first order perturbation theory and the ladder approximations. The results are analyzed and compared for systems at the verge of the metal-insulator transitions. The dependencies on the electronic correlation strength and on doping are explored. In addition, the account for the orbital degeneracy allows an insight into the influence of interband correlations on the two particle excitations. A suitable experimental realization is discussed.Comment: 25 pp, 10 figs. to be published in PR

    Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory

    Full text link
    We write equations of motion for density variables that are equivalent to Newtons equations. We then propose a set of trial equations parameterised by two unknown functions to describe the exact equations. These are chosen to best fit the exact Newtonian equations. Following established ideas, we choose to separate these trial functions into a set representing integrable motions of density waves, and a set containing all effects of non-integrability. It transpires that the static structure factor is fixed by this minimum condition to be the solution of the Yvon-Born-Green (YBG) equation. The residual interactions between density waves are explicitly isolated in their Newtonian representation and expanded by choosing the dominant objects in the phase space of the system, that can be represented by a dissipative term with memory and a random noise. This provides a mapping between deterministic and stochastic dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to calculate the memory kernel. We write exactly the expression for it, following two different routes, i.e. using explicitly Newtons equations, or instead, their implicit form, that must be projected onto density pairs, as in the development of the well-established Mode Coupling Theory (MCT). We compare these two ways of proceeding, showing the necessity to enforce a new equation of constraint for the two schemes to be consistent. Thus, while in the first `Newtonian' representation a simple gaussian approximation for the random process leads easily to the Mean Spherical Approximation (MSA) for the statics and to MCT for the dynamics of the system, in the second case higher levels of approximation are required to have a fully consistent theory
    • …
    corecore