10,662 research outputs found
Topology, connectivity and electronic structure of C and B cages and the corresponding nanotubes
After a brief discussion of the structural trends which appear with
increasing number of atoms in B cages, a one-to one correspondence between the
connectivity of B cages and C cage structures will be proposed. The electronic
level spectra of both systems from Hartree-Fock calculations is given and
discussed. The relation of curvature introduced into an originally planar
graphitic fragment to pentagonal 'defects' such as are present in
buckminsterfullerene is also briefly treated.
A study of the structure and electronic properties of B nanotubes will then
be introduced. We start by presenting a solution of the free-electron network
approach for a 'model boron' planar lattice with local coordination number 6.
In particular the dispersion relation E(k) for the pi-electron bands, together
with the corresponding electronic Density Of States (DOS), will be exhibited.
This is then used within the zone folding scheme to obtain information about
the electronic DOS of different nanotubes obtained by folding this model boron
sheet.
To obtain the self-consistent potential in which the valence electrons move
in a nanotube, 'the March model' in its original form was invoked and results
are reported for a carbon nanotube.
Finally, heterostructures, such as BN cages and fluorinated
buckminsterfullerene, will be briefly treated, the new feature here being
electronegativity difference.Comment: 22 pages (revtex4) 12 figure
Tunneling, self-trapping and manipulation of higher modes of a BEC in a double well
We consider an atomic Bose-Einstein condensate trapped in a symmetric
one-dimensional double well potential in the four-mode approximation and show
that the semiclassical dynamics of the two ground state modes can be strongly
influenced by a macroscopic occupation of the two excited modes. In particular,
the addition of the two excited modes already unveils features related to the
effect of dissipation on the condensate. In general, we find a rich dynamics
that includes Rabi oscillations, a mixed Josephson-Rabi regime, self-trapping,
chaotic behavior, and the existence of fixed points. We investigate how the
dynamics of the atoms in the excited modes can be manipulated by controlling
the atomic populations of the ground states.Comment: 12 pages, 5 figure
An Interdisciplinary Approach to the Strategic Defense Initiative Debate
An interdisciplinary framework in which international law is but one element is presented in this article in the hope of lending organization to the complex subject of space weaponization. Seven factors are discussed which strongly influence decision-makers in both the United States and the Soviet Union who are charged with establishing and implementing the military space policies of their respective nations. They are (1) the relationship between the militarization of earth and the militarization of space; (2) the effects of weapon technology and national defense policy upon the use of space; (3) the interrelationship of the international law-making process with national space objectives; (4) the influence of the press and public opinion upon the military space debate; (5) problems inherent with outer space arms control treaties and provisions; (6) the danger of relying upon false analogies in debating issues of spaceborne weaponry; and (7) the tendency to treat arms control and disarmament as the only available means to bring about peace.
This proposed framework then will be applied to help identify and analyze important elements of the debate surrounding the United States\u27 Strategic Defense Initiative (SDI) program. SDI presently is the most debated issue in the field of military space operations. The application of an interdisciplinary approach which considers international law, technology, national defense policy and strategy, and the role of public opinion offers a practical and organized manner in which to debate the value and effects of on-going research efforts concerning a spaceborne ballistic missile defense system
Scaling of the superconducting transition temperature in underdoped high-Tc cuprates with a pseudogap energy: Does this support the anyon model of their superfluidity?
In earlier work, we have been concerned with the scaling properties of some
classes of superconductors, specifically with heavy Fermion materials and with
five bcc transition metals of BCS character. Both of these classes of
superconductors were three-dimensional but here we are concerned solely with
quasi-two-dimensional high-Tc cuprates in the underdoped region of their phase
diagram. A characteristic feature of this part of the phase diagram is the
existence of a pseudogap (pg). We therefore build our approach around the
assumption that kB Tc / E_pg is the basic dimensionless ratio on which to
focus, where the energy E_pg introduced above is a measure of the pseudogap.
Since anyon fractional statistics apply to two-dimensional assemblies, we
expect the fractional statistics parameter allowing `interpolation' between
Fermi-Dirac and Bose-Einstein statistical distribution functions as limiting
cases to play a significant role in determining kB Tc / E_pg and experimental
data are analyzed with this in mind.Comment: Phys. Chem. Liquids, to be publishe
Crisis Marketing: The McDonnell Douglas DC-10
The McDonnell Douglas DC-10 aircraft has been plagued by a series of problems throughout its history that has shaken customer confidence and resulted in many cancelled orders. Since the DC-10 represents a large portion of the corporation\u27s revenue, it is essential that the firm continue to sell the aircraft near previously projected rates. This has created a case of crisis marketing for the company.
This study will use the DC-10 case to present a general crisis marketing model. This model will be a step-by-step framework that can be applied to most crisis marketing situations.
By using this model and seeing it applied to the DC-10 case, managers should now be able to approach a crisis marketing situation in a more logical and organized manner
Stretched chemical bonds in Si6H6: A transition from ring currents to localized pi-electrons?
Motivated by solid-state studies on the cleavage force in Si, and the
consequent stretching of chemical bonds, we here study bond stretching in the,
as yet unsynthesized, free space molecule Si6H6. We address the question as to
whether substantial bond stretching (but constrained to uniform scaling on all
bonds) can result in a transition from ring current behaviour, characteristic
say of benzene at its equilibrium geometry, to localized pi-electrons on Si
atoms. Some calculations are also recorded on dissociation into 6 SiH radicals.
While the main studies have been carried out by unrestricted Hartree-Fock (HF)
theory, the influence of electron correlation has been examined using two forms
of density functional theory. Planar Si6H6 treated by HF is bound to be
unstable, not all vibrational frequencies being real. Some buckling is then
allowed, which results in real frequencies and stability. Evidence is then
provided that the non-planar structure, as the Si-Si distance is increased,
exhibits pi-electron localization in the range 1.2-1.5 times the equilibrium
distance
Statistical correlations of an anyon liquid at low temperatures
Using a proposed generalization of the pair distribution function for a gas
of non-interacting particles obeying fractional exclusion statistics in
arbitrary dimensionality, we derive the statistical correlations in the
asymptotic limit of vanishing or low temperature. While Friedel-like
oscillations are present in nearly all non-bosonic cases at T=0, they are
characterized by exponential damping at low temperature. We discuss the
dependence of these features on dimensionality and on the value of the
statistical parameter alpha.Comment: to appear in Phys. Chem. Liquid
- …