77 research outputs found

    Diseño y programación de un software de transformación de matrices para el análisis de redes

    Get PDF
    For many professionals linked to Social Network Analysis (SNA), it is important to transform their data for further studies. Often, the data of systems where exist ties are stored in elementary matrices, and not in full matrices, frequently used in SNA software. The objective of this paper was to design and program a modifiable software with the potential to transform three columns matrices [A (group 1), B (group 2) and C (ties between groups nodes)] to full and symmetric matrices, and to analyze the advantages of software regarding storage and data processing problems. To perform the necessary operations was developed a transformation matrix method and an algorithm (pseudocode) of this method. The algorithm was programmed in wxBasic to improve the compatibility between operating systems and to make the user modification easier, obtaining stable and easy-to-use software.Para muchos profesionales vinculados al Análisis de Redes Sociales (ARS), es de importancia transformar sus datos para realizar estudios posteriores. Es frecuente que los datos de sistemas donde intervienen conexiones se almacenen en matrices más elementales que las matrices completas o “full matrix”, frecuentemente utilizadas en programas de ARS. El objetivo principal de este trabajo fue diseñar y programar un software modificable para transformar matrices de tres columnas [A (grupo 1), B (grupo 2) y C (conexiones entre nodos de ambos grupos)] a matrices completas y simétricas, y analizar las ventajas del software con respecto a los problemas de almacenamiento y transformación de datos. Para ello se desarrolló un método de transformación de matrices y se diseñó un algoritmo (pseudocódigo) para realizar las operaciones necesarias. El algoritmo fue programado usando el lenguaje wxBasic para aumentar la compatibilidad entre sistemas operativos y facilitar su modificación por el usuario, obteniéndose un software estable y de fácil uso

    Experimental Assessment of Time Reversal for In-Body to In-Body UWB Communications

    Full text link
    [EN] The standard of in-body communications is limited to the use of narrowband systems. These systems are far from the high data rate connections achieved by other wireless telecommunication services today in force. The UWB frequency band has been proposed as a possible candidate for future in-body networks. However, the attenuation of body tissues at gigahertz frequencies could be a serious drawback. Experimental measurements for channel modeling are not easy to carry out, while the use of humans is practically forbidden. Sophisticated simulation tools could provide inaccurate results since they are not able to reproduce all the in-body channel conditions. Chemical solutions known as phantoms could provide a fair approximation of body tissues¿ behavior. In this work, the Time Reversal technique is assessed to increase the channel performance of in-body communications. For this task, a large volume of experimental measurements is performed at the low part of UWB spectrum (3.1-5.1 GHz) by using a highly accurate phantom-based measurement setup. This experimental setup emulates an in-body to in-body scenario, where all the nodes are implanted inside the body. Moreover, the in-body channel characteristics such as the path loss, the correlation in transmission and reception, and the reciprocity of the channel are assessed and discussed.This work was supported by the Programa de Ayudas de Investigacion y Desarrollo (PAID-01-16) from Universitat Politecnica de Valencia and by the Ministerio de Economia y Competitividad, Spain (TEC2014-60258-C2-1-R), by the European FEDER funds.Andreu-Estellés, C.; Garcia-Pardo, C.; Castelló-Palacios, S.; Cardona Marcet, N. (2018). Experimental Assessment of Time Reversal for In-Body to In-Body UWB Communications. Wireless Communications and Mobile Computing (Online). (8927107):1-12. https://doi.org/10.1155/2018/8927107S1128927107Fireman, Z. (2003). Diagnosing small bowel Crohn’s disease with wireless capsule endoscopy. Gut, 52(3), 390-392. doi:10.1136/gut.52.3.390Burri, H., & Senouf, D. (2009). Remote monitoring and follow-up of pacemakers and implantable cardioverter defibrillators. Europace, 11(6), 701-709. doi:10.1093/europace/eup110Scanlon, W. G., Burns, B., & Evans, N. E. (2000). Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz. IEEE Transactions on Biomedical Engineering, 47(4), 527-534. doi:10.1109/10.828152Chavez-Santiago, R., Garcia-Pardo, C., Fornes-Leal, A., Valles-Lluch, A., Vermeeren, G., Joseph, W., … Cardona, N. (2015). Experimental Path Loss Models for In-Body Communications within 2.36-2.5 GHz. IEEE Journal of Biomedical and Health Informatics, 1-1. doi:10.1109/jbhi.2015.2418757Khaleghi, A., Chávez-Santiago, R., & Balasingham, I. (2010). Ultra-wideband pulse-based data communications for medical implants. IET Communications, 4(15), 1889. doi:10.1049/iet-com.2009.0692Khaleghi, A., Chávez-Santiago, R., & Balasingham, I. (2011). Ultra-wideband statistical propagation channel model for implant sensors in the human chest. IET Microwaves, Antennas & Propagation, 5(15), 1805. doi:10.1049/iet-map.2010.0537Kurup, D., Scarpello, M., Vermeeren, G., Joseph, W., Dhaenens, K., Axisa, F., … Vanfleteren, J. (2011). In-body path loss models for implants in heterogeneous human tissues using implantable slot dipole conformal flexible antennas. EURASIP Journal on Wireless Communications and Networking, 2011(1). doi:10.1186/1687-1499-2011-51Floor, P. A., Chavez-Santiago, R., Brovoll, S., Aardal, O., Bergsland, J., Grymyr, O.-J. H. N., … Balasingham, I. (2015). In-Body to On-Body Ultrawideband Propagation Model Derived From Measurements in Living Animals. IEEE Journal of Biomedical and Health Informatics, 19(3), 938-948. doi:10.1109/jbhi.2015.2417805Shimizu, Y., Anzai, D., Chavez-Santiago, R., Floor, P. A., Balasingham, I., & Wang, J. (2017). Performance Evaluation of an Ultra-Wideband Transmit Diversity in a Living Animal Experiment. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2596-2606. doi:10.1109/tmtt.2017.2669039Anzai, D., Katsu, K., Chavez-Santiago, R., Wang, Q., Plettemeier, D., Wang, J., & Balasingham, I. (2014). Experimental Evaluation of Implant UWB-IR Transmission With Living Animal for Body Area Networks. IEEE Transactions on Microwave Theory and Techniques, 62(1), 183-192. doi:10.1109/tmtt.2013.2291542Chou, C.-K., Chen, G.-W., Guy, A. W., & Luk, K. H. (1984). Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics, 5(4), 435-441. doi:10.1002/bem.2250050408Cheung, A. Y., & Koopman, D. W. (1976). Experimental Development of Simulated Biomaterials for Dosimetry Studies of Hazardous Microwave Radiation (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 24(10), 669-673. doi:10.1109/tmtt.1976.1128936YAMAMOTO, H., ZHOU, J., & KOBAYASHI, T. (2008). Ultra Wideband Electromagnetic Phantoms for Antennas and Propagation Studies. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E91-A(11), 3173-3182. doi:10.1093/ietfec/e91-a.11.3173Lazebnik, M., Madsen, E. L., Frank, G. R., & Hagness, S. C. (2005). Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine and Biology, 50(18), 4245-4258. doi:10.1088/0031-9155/50/18/001Yilmaz, T., Foster, R., & Hao, Y. (2014). Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glucose Levels. IEEE Transactions on Antennas and Propagation, 62(6), 3064-3075. doi:10.1109/tap.2014.2313139Gezici, S., Zhi Tian, Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., & Sahinoglu, Z. (2005). Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), 70-84. doi:10.1109/msp.2005.1458289Marinova, M., Thielens, A., Tanghe, E., Vallozzi, L., Vermeeren, G., Joseph, W., … Martens, L. (2015). Diversity Performance of Off-Body MB-OFDM UWB-MIMO. IEEE Transactions on Antennas and Propagation, 63(7), 3187-3197. doi:10.1109/tap.2015.2422353SHI, J., ANZAI, D., & WANG, J. (2012). Channel Modeling and Performance Analysis of Diversity Reception for Implant UWB Wireless Link. IEICE Transactions on Communications, E95.B(10), 3197-3205. doi:10.1587/transcom.e95.b.3197Pajusco, P., & Pagani, P. (2009). On the Use of Uniform Circular Arrays for Characterizing UWB Time Reversal. IEEE Transactions on Antennas and Propagation, 57(1), 102-109. doi:10.1109/tap.2008.2009715Chavez-Santiago, R., Sayrafian-Pour, K., Khaleghi, A., Takizawa, K., Wang, J., Balasingham, I., & Li, H.-B. (2013). Propagation models for IEEE 802.15.6 standardization of implant communication in body area networks. IEEE Communications Magazine, 51(8), 80-87. doi:10.1109/mcom.2013.6576343Andreu, C., Castello-Palacios, S., Garcia-Pardo, C., Fornes-Leal, A., Valles-Lluch, A., & Cardona, N. (2016). Spatial In-Body Channel Characterization Using an Accurate UWB Phantom. IEEE Transactions on Microwave Theory and Techniques, 64(11), 3995-4002. doi:10.1109/tmtt.2016.2609409Pahlavan, K., & Levesque, A. H. (2005). Wireless Information Networks. doi:10.1002/0471738646Qiu, R. C., Zhou, C., Guo, N., & Zhang, J. Q. (2006). Time Reversal With MISO for Ultrawideband Communications: Experimental Results. IEEE Antennas and Wireless Propagation Letters, 5, 269-273. doi:10.1109/lawp.2006.875888Ando, H., Takizawa, K., Yoshida, T., Matsushita, K., Hirata, M., & Suzuki, T. (2016). Wireless Multichannel Neural Recording With a 128-Mbps UWB Transmitter for an Implantable Brain-Machine Interfaces. IEEE Transactions on Biomedical Circuits and Systems, 10(6), 1068-1078. doi:10.1109/tbcas.2016.251452

    Initial UWB in-body channel characterization using a novel multilayer phantom measurement setup

    Full text link
    [EN] Wireless Body Area Networks (WBANs) are a promising technology for medical purposes. Currently the WBAN are classified into: implanted (in-), surface (on-) or outside (off-) body communications regarding the location of the devices with reference to the human body. The Ultra Wide-Band (UWB) frequency band is growing as a band of interest for implanted communications because of its high data rate and low power consumption among other benefits. Software simulations, in-vivo measurements and experimental phantom measurements are common methods to properly characterize the propagation channel. Nevertheless, up to now, experimental phantoms measurements presented in the literature show some inconveniences, i.e., the accuracy of the phantoms compared with the real human tissues or the testbed used for the measurements. This paper aims at overcoming these issues using accurate phantoms designed for the purpose of implanted communications in the UWB frequency band. In addition, a multilayer phantom container was developed. This container has capacity for two different phantoms, emulating a heterogeneous propagation medium for in-body measurements. Moreover, a novel setup was built for in-body phantom measurements. As a result, an experimental path loss model is presented from the measurements obtained with phantoms. Besides, software simulations mimicking the experimental setup are performed in order to validate the previous results obtainedThis work was supported by the European Union's H2020:MSCA:ITN program for the "Wireless In-body Environment Communication-WiBEC" project under the grant agreement no. 675353. this work was also funded by the Programa de Ayudas de Investigación y Desarrollo 8PAID-01-16) from Univeristat Politècnica de València and by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1-R), by the European FEDER funds.Pérez-Simbor, S.; Barbi, M.; Garcia-Pardo, C.; Castelló-Palacios, S.; Cardona Marcet, N. (2018). Initial UWB in-body channel characterization using a novel multilayer phantom measurement setup. IEEE. 384-389. https://doi.org/10.1109/WCNCW.2018.8369011S38438

    CD8α is expressed by human monocytes and enhances FcγR-dependent responses

    Get PDF
    Abstract Background CD8α enhances the responses of antigen-specific CTL activated through TCR through binding MHC class I, favoring lipid raft partitioning of TCR, and inducing intracellular signaling. CD8α is also found on dendritic cells and rat macrophages, but whether CD8α enhances responses of a partner receptor, like TCR, to activate these cells is not known. TCR and FcR, use analogous or occasionally interchangeable signaling mechanisms suggesting the possibility that CD8α co-activates FcR responses. Interestingly, CD8α+ monocytes are often associated with rat models of disease involving immune-complex deposition and FcR-mediated pathology, such as arthritis, glomerulonephritis, ischaemia, and tumors. While rat macrophages have been shown to express CD8α evidence for CD8α expression by mouse or human monocytes or macrophages was incomplete. Results We detected CD8α, but not CD8β on human monocytes and the monocytic cell line THP-1 by flow cytometry. Reactivity of anti-CD8α mAb with monocytes is at least partly independent of FcR as anti-CD8α mAb detect CD8α by western blot and inhibit binding of MHC class I tetramers. CD8α mRNA is also found in monocytes and THP-1 suggesting CD8α is synthesized by monocytes and not acquired from other CD8α+ cell types. Interestingly, CD8α from monocytes and blood T cells presented distinguishable patterns by 2-D electrophoresis. Anti-CD8α mAb alone did not activate monocyte TNF release. In comparison, TNF release by human monocytes stimulated in a FcR-dependent manner with immune-complexes was enhanced by inclusion of anti-CD8α mAb in immune-complexes. Conclusion Human monocytes express CD8α. Co-engagement of CD8α and FcR enhances monocyte TNF release, suggesting FcR may be a novel partner receptor for CD8α on innate immune cells.</p

    Tailor-Made Tissue Phantoms Based on Acetonitrile Solutions for Microwave Applications up to 18 GHz

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Tissue-equivalent phantoms play a key role in the development of new wireless communication devices that are tested on such phantoms prior to their commercialization. However, existing phantoms cover a small number of tissues and do not reproduce them accurately within wide frequency bands. This paper aims at enlarging the number of mimicked tissues as well as their working frequency band. Thus, a variety of potential compounds are scanned according to their relative permittivity from 0.5 to 18 GHz. Next, a combination of these compounds is characterized so the relation between their dielectric properties and composition is provided. Finally, taking advantage of the previous analysis, tailor-made phantoms are developed for different human tissues up to 18 GHz and particularized for the main current body area network (BAN) operating bands. The tailor-made phantoms presented here exhibit such a high accuracy as would allow researchers and manufacturers to test microwave devices at high frequencies for large bandwidths as well as the use of heterogeneous phantoms in the near future. The key to these phantoms lies in the incorporation of acetonitrile to aqueous solutions. Such compounds have a suitable behavior to achieve the relative permittivity values of body tissues within the studied frequency band.This work was supported by the Ministerio de Economia y Competitividad, Spain (TEC2014-60258-C2-1-R) and by the European FEDER Funds.Castelló-Palacios, S.; García Pardo, C.; Fornés Leal, A.; Cardona Marcet, N.; Vallés Lluch, A. (2016). Tailor-Made Tissue Phantoms Based on Acetonitrile Solutions for Microwave Applications up to 18 GHz. IEEE Transactions on Microwave Theory and Techniques. 64(11):3987-3994. https://doi.org/10.1109/TMTT.2016.2608890S39873994641

    Frequency Dependence of UWB In-Body Radio Channel Characteristics

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] In this letter, a research of ultra-wideband in-body channel by using a high accurate phantom is performed in order to evaluate the impact of frequency dependence of human tissues on the channel characteristics. Hence, a phantom-based measurement campaign from 3.1 to 5.1 GHz has been conducted. From postprocessing data, the path loss is assessed considering subbands of 500 MHz as well as the entire frequency range under test. In addition, the correlation in transmission is computed and discussed.This work was supported in part by the Ministerio de Economia y Competitividad, Spain, under Grant TEC2014-60258-C2-1-R, and in part by the European FEDER funds. (Corresponding author: Carlos Andreu.)Andreu-Estellés, C.; Garcia-Pardo, C.; Castelló-Palacios, S.; Vallés Lluch, A.; Cardona Marcet, N. (2018). Frequency Dependence of UWB In-Body Radio Channel Characteristics. IEEE Microwave and Wireless Components Letters. 28(4):359-361. https://doi.org/10.1109/LMWC.2018.2808427S35936128

    Wideband phantoms of different body tissues for heterogeneous models in body area networks

    Full text link
    [EN] One of the key issues about wireless technologies is their interaction with the human body. The so-called internet of things will comprise many devices that will transmit either around or through the human body. These devices must be tested either in their working medium, when possible, or in the most realistic one. For this purpose, tissue-like phantoms are the best alternative to carry out realistic analyses of the performance of body area networks. In addition, they are the conventional way to certify the compliance of commercial standards by these devices. However, the number of phantoms that work in large bandwidths is limited in literature. This work aims at presenting chemical solutions that will be useful to prepare a variety of wideband tissue phantoms. Besides, the colon was mimicked in two ways, the healthy tissue and the malignant one, taking into account studies that relate changes on the relative permittivity with cancer. They were designed on the basis of acetonitrile in aqueous solutions as described in a previous work. Thus, many scenarios could be developed such as multilayers which imitate parts of the heterogeneous body.Research supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) from Universitat Politècnica de València, by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1- R) and by the European FEDER Funds.Castelló-Palacios, S.; Garcia-Pardo, C.; Fornés Leal, A.; Cardona Marcet, N.; Vallés Lluch, A. (2018). Wideband phantoms of different body tissues for heterogeneous models in body area networks. IEEE. 3032-3035. https://doi.org/10.1109/EMBC.2017.8037496S3032303

    Formulas for easy-to-prepare tailored phantoms at 2.4 GHz ISM band

    Full text link
    [EN] Emerging integration of communication networks into wearable or implantable body devices involves a challenge due to the transmitting medium, the body itself. This medium is heterogeneous and lossier than air, so devices that are supposed to work on it should be tested in tissue-equivalent materials. A number of materials with the electromagnetic response of body tissues have been proposed. Most of them are sucrose aqueous solutions that are supposed to simulate human's muscle tissue mainly within medical frequency bands. However, these recipes are restricted to a single tissue and it is difficult to adapt them to fit the permittivity values of different body tissues. The significance of this study lies in the development of a mathematical relationship that models the dielectric properties of an aqueous solution according to the concentration of sugar and salt at 2.4 GHz, the frequency around which an Industrial, Scientific and Medical (ISM) band is placed. Thus, it becomes possible to create custom-made phantoms with simple and accessible ingredients that are easy to prepare in any laboratory.This work was supported by the Ministerio de Economia y Competitividad, Spain (TEC2014-60258-C2-1-R) and by the European FEDER Funds.Castelló-Palacios, S.; Garcia-Pardo, C.; Fornés Leal, A.; Cardona Marcet, N.; Vallés Lluch, A. (2017). Formulas for easy-to-prepare tailored phantoms at 2.4 GHz ISM band. IEEE. 27-31. https://doi.org/10.1109/ISMICT.2017.7891760S273

    Accurate broadband measurement of electromagnetic tissue phantoms using open-ended coaxial systems

    Full text link
    [EN] New technologies and devices for wireless communication networks are continually developed. In order to assess their performance, they have to be tested in realistic environments taking into account the influence of the body in wireless communications. Thus, the development of phantoms, which are synthetic materials that can emulate accurately the electromagnetic behaviour of different tissues, is mandatory. An accurate dielectric measurement of these phantoms requires using a measurement method with a low uncertainty. The open-ended coaxial technique is the most spread technique but its accuracy is strongly conditioned by the calibration procedure. A typical calibration is performed using an open circuit, a short circuit and water. However, this basic calibration is not the most accurate approach for measuring all kinds of materials. In this paper, an uncertainty analysis of the calibration process of open-ended coaxial characterization systems when a polar liquid is added to the typical calibration is provided. Measurements are performed on electromagnetically well-known liquids in the 0.5 - 8.5 GHz band. Results show that adding methanol improves the accuracy in the whole solution domain of the system, mainly when measuring phantoms that mimic high water content tissues, whereas ethanol is more suitable for measuring low water content tissue phantoms.This work was supported by the Ministerio de Educacion y Ciencia, Spain (ref. TEC2014-60258-C2-1-R, TEC2014-56469-REDT), by the European FEDER funds.Fornés Leal, A.; Garcia-Pardo, C.; Castelló-Palacios, S.; Vallés Lluch, A.; Cardona Marcet, N. (2007). Accurate broadband measurement of electromagnetic tissue phantoms using open-ended coaxial systems. IEEE. 32-36. https://doi.org/10.1109/ISMICT.2017.7891761S323

    Identification of potential novel proteomic markers of Leishmania spp.-derived exosomes

    Get PDF
    IntroductionExtracellular vesicles (EVs) are heterogenous cell-derived membrane-bound structures which can be subdivided into three distinct classes according to distinct morphological characteristics, cellular origins, and functions. Small EVs, or exosomes, can be produced by the protozoan parasite Leishmania through the evolutionarily conserved ESCRT pathway, and act as effectors of virulence and drivers of pathogenesis within mammalian hosts. Techniques for the identification of EVs of non-mammalian origin, however, remain inaccurate in comparison to their well-characterized mammalian counterparts. Thus, we still lack reliable and specific markers for Leishmania-derived exosomes, which poses a significant challenge to the field.MethodsHerein, we utilized serial differential ultracentrifugation to separate Leishmania-derived EV populations into three distinct fractions. Nanoparticle tracking analysis and transmission electron microscopy were used to validate their morphological characteristics, and bioinformatic analysis of LC-MS/MS proteomics corroborated cellular origins and function.DiscussionProteomic data indicated potential novel proteic markers of Leishmania-derived exosomes, including proteins involved in endosomal machinery and the ESCRT pathway, as well as the parasitic phosphatase PRL-1. Further investigation is required to determine the specificity and sensitivity of these markers
    corecore