8 research outputs found
Transmission electron microscopy for characterization of acrosomal damage after Percoll gradient centrifugation of cryopreserved bovine spermatozoa
The objective of this study was to characterize acrosomal ultrastructure following discontinuous Percoll gradient centrifugation of cryopreserved bovine sperm. Semen was collected from six bulls of different breeds and three ejaculates per bull were evaluated. Frozen semen samples were thawed and the acrosomal region of sperm cells was evaluated by transmission electron microscopy (TEM) before (n = 18) and after (n = 18) Percoll centrifugation. The evaluation of 20 sperm heads from each of the 36 samples analyzed ensured that a large number of cells were investigated. The data were subjected to analysis of variance at a level of significance of 5%. Percoll centrifugation reduced the percentage of sperm exhibiting normal acrosomes (from 61.77 to 30.24%), reduced the percentage of sperm presenting atypical acrosome reactions (from 28.38 to 4.84%) and increased the percentage of sperm exhibiting damage in the acrosome (from 6.14 to 64.26%). The percentage of sperm with typical acrosome reactions was not significantly different before (3.70%) and after (0.67%) centrifugation. TEM distinguished four different types of acrosomal status and enabled ultrastructural characterization of acrosomal injuries. The percentage of sperm exhibiting normal acrosomes decreased and damage in the acrosome was the most frequent acrosomal injury with the Percoll gradient centrifugation protocol utilized
IMMUNODIAGNOSIS OF HUMAN STRONGYLOIDIASIS: USE OF SIX DIFFERENT ANTIGENIC FRACTIONS FROM Strongyloides venezuelensis PARASITIC FEMALES
SUMMARY The aim of this study was to evaluate six different antigenic fractions from Strongyloides venezuelensis parasitic females for the immunodiagnosis of human strongyloidiasis. Soluble and membrane fractions from S. venezuelensis parasitic females were prepared in phosphate-buffered saline (SSF and SMF, respectively), Tris-HCl (TSF and TMF, respectively), and an alkaline buffer (ASF and AMF, respectively). Serum samples obtained from patients with strongyloidiasis or, other parasitic diseases, and healthy individuals were analyzed by enzyme-linked immunosorbent assay (ELISA). Soluble fractions SSF, TSF, and ASF showed 85.0%, 75.0%, and 80.0% sensitivity and 93.1%, 93.1%, and 87.5% specificity, respectively. Membrane fractions SMF, TMF, and AMF showed 80.0%, 75.0%, and 85.0% sensitivity, and 95.8%, 90.3%, and 91.7% specificity, respectively. In conclusion, the present results suggest that the fractions obtained from parasitic females, especially the SSF and SMF, could be used as alternative antigen sources in the serodiagnosis of human strongyloidiasis
Structural Changes of Fat Tissue After Nonaspirative Ultrasonic Hydrolipoclasy
Background: Hydrolipoclasy is an alternative technique less invasive than liposuction. Hydrolipoclasy uses normal saline or hypotonic solution and ultrasound waves that act directly on local adiposity. In the literature there are few reports of morphostructural changes on adipose tissue. Materials and Methods: This study was aimed to evaluate the amount of fat cells injured immediately after treatment and after three days and also cell migration to the area treated using 8 pigs as experimental models, as well as cellular changes by transmission electron microscopy (TEM). Results: The Wilcoxon test was conducted, and a difference was found between the treated side and the corresponding control side on the number of viable cells. The treated side showed a smaller number of viable cells compared to the control side both immediately after treatment and 3 days later. Also occurring 3 days after treatment was the migration of lymphoid cells and fibroblasts, which shows the local inflammatory process and conjunctive neoformation. Soon after treatment there was fluid accumulation within adipocytes. Conclusions: The results shown in this paper demonstrate Ultrasonic Hydrolipoclasy as a viable alternative for the treatment of localized fat deposits without the side effects of traditional surgical procedures. Better results are expected when hypotonic solution is used, since it penetrates into the cell