370 research outputs found

    Protein-enriched Platelet-Rich Plasma (PEF-PRP) a New Products for Tissue Regeneration Developed Through the Ultrafiltration of PRP - Preclinical Study

    Get PDF
    Background: Platelet-Rich Plasma (PRP) is a blood component used for the biological treatment in many fields of regenerative medicine. The term PRP is currently applied to numerous blood components with different cellular and protein compositions. The optimal platelet concentration and the best technique for preparing PRP have not yet been defined and it is, therefore, important to understand the specific biological roles of the individual components. The aqueous part of PRP is plasma, which is an acellular component with containing proteins that are important for tissue regeneration. Objective: This preclinical study evaluated the biological characteristics and effects on proliferation (in an in vitro model) of a blood component Protein-Enriched Filtered PRP (PEFPRP) obtained through the ultrafiltration of low-concentration PRP and compared these effects with those of a standard PRP and other blood components preparation. Method: PEFPRP is a plasma enriched obtained by ultrafiltration of a plasma with low concentration platelets and its effects have been compared with those of a standard PRP and other blood components preparation. Result and Conclusion: PEFPRP provides a high concentration of proteins which have an important accessory function in in-vitro proliferation and could be highly significant in-vivo, accelerating tissue regeneration

    Extracellular Vesicles Mediate Mesenchymal Stromal Cell-Dependent Regulation of B Cell PI3K-AKT Signaling Pathway and Actin Cytoskeleton

    Get PDF
    Mesenchymal stromal cells (MSCs) are adult, multipotent cells of mesodermal origin representing the progenitors of all stromal tissues. MSCs possess significant and broad immunomodulatory functions affecting both adaptive and innate immune responses once MSCs are primed by the inflammatory microenvironment. Recently, the role of extracellular vesicles (EVs) in mediating the therapeutic effects of MSCs has been recognized. Nevertheless, the molecular mechanisms responsible for the immunomodulatory properties of MSC-derived EVs (MSC-EVs) are still poorly characterized. Therefore, we carried out a molecular characterization of MSC-EV content by high-throughput approaches. We analyzed miRNA and protein expression profile in cellular and vesicular compartments both in normal and inflammatory conditions. We found several proteins and miRNAs involved in immunological processes, such as MOES, LG3BP, PTX3, and S10A6 proteins, miR-155-5p, and miR-497-5p. Different in silico approaches were also performed to correlate miRNA and protein expression profile and then to evaluate the putative molecules or pathways involved in immunoregulatory properties mediated by MSC-EVs. PI3K-AKT signaling pathway and the regulation of actin cytoskeleton were identified and functionally validated in vitro as key mediators of MSC/B cell communication mediated by MSC-EVs. In conclusion, we identified different molecules and pathways responsible for immunoregulatory properties mediated by MSC-EVs, thus identifying novel therapeutic targets as safer and more useful alternatives to cell or EV-based therapeutic approaches

    New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration

    Get PDF
    The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy

    The mutant p53-driven secretome has oncogenic functions in pancreatic ductal adenocarcinoma cells

    Get PDF
    The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC

    Treatment with Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors (PCSK9i): Current Evidence for Expanding the Paradigm?

    Get PDF
    Background: Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are low-density lipoprotein cholesterol (LDL-C)-lowering drugs that play a critical role in lipoprotein clearance and metabolism. PCSK9i are used in patients with familial hypercholesterolemia and for the secondary prevention of acute cardiovascular events in patients with atherosclerotic cardiovascular disease (CVD). Methods: We focused on the literature from 2015, the year of approval of the PCSK9 monoclonal antibodies, to the present on the use of PCSK9i not only in the lipid field but also by evaluating their effects on metabolic factors. Results: PCSK9 inhibits cholesterol efflux from macrophages and contributes to the formation of macrophage foam cells. PCSK9 has the ability to bind to Toll-like receptors, thus mediating the inflammatory response and binding to scavenger receptor B/cluster of differentiation 36. PCSK9i lower the entire spectrum of apolipoprotein B-100 containing lipoproteins (LDL, very LDLs, intermediate-density lipoproteins, and lipoprotein[a]) in high CVD-risk patients. Moreover, PCSK9 inhibitors are neutral on risk for new-onset diabetes mellitus and might have a beneficial impact on the development of nonalcoholic fatty liver disease by improving lipid and inflammatory biomarker profiles, steatosis biomarkers such as the triglyceride-glucose index, and hepatic steatosis index, although there are no comprehensive studies with long-term follow-up studies. Conclusion: The discovery of PCSK9i has opened a new era in therapeutic management in patients with hypercholesterolemia and high cardiovascular risk. Increasingly, there has been mounting scientific and clinical evidence supporting the safety and tolerability of PCSK9i

    Plant Signals Anticipate the Induction of the Type III Secretion System in Pseudomonas syringae pv. actinidiae, Facilitating Efficient Temperature-Dependent Effector Translocation

    Get PDF
    Disease resistance in plants depends on a molecular dialogue with microbes that involves many known chemical effectors, but the time course of the interaction and the influence of the environment are largely unknown. The outcome of host-pathogen interactions is thought to reflect the offensive and defensive capabilities of both players. When plants interact with Pseudomonas syringae, several well-characterized virulence factors contribute to early bacterial pathogenicity, including the type III secretion system (T3SS), which must be activated by signals from the plant and environment to allow the secretion of virulence effectors. The manner in which these signals regulate T3SS activity is still unclear. Here, we strengthen the paradigm of the plant-pathogen molecular dialogue by addressing overlooked details concerning the timing of interactions, specifically the role of plant signals and temperature on the regulation of bacterial virulence during the first few hours of the interaction. Whole-genome expression profiling after 1 h revealed that the perception of plant signals from kiwifruit or tomato extracts anticipated T3SS expression in P. syringae pv. actinidiae compared to apoplast-like conditions, facilitating more efficient effector transport in planta, as revealed by the induction of a temperature-dependent hypersensitive response in the nonhost plant Arabidopsis thaliana Columbia-0 (Col-0). Our results show that in the arms race between plants and bacteria, the temperature-dependent timing of bacterial virulence versus the induction of plant defenses is probably one of the fundamental parameters governing the outcome of the interaction. IMPORTANCE Plant diseases-their occurrence and severity-result from the impact of three factors: the host, the pathogen, and the environmental conditions, interconnected in the disease triangle. Time was further included as a fourth factor accounting for plant disease, leading to a more realistic three-dimensional disease pyramid to represent the evolution of disease over time. However, this representation still considers time only as a parameter determining when and to what extent a disease will occur, at a scale from days to months. Here, we show that time is a factor regulating the arms race between plants and pathogens, at a scale from minutes to hours, and strictly depends on environmental factors. Thus, besides the arms possessed by pathogens and plants per se, the opportunity and the timing of arms mobilization make the difference in determining the outcome of an interaction and thus the occurrence of plant disease
    corecore