34 research outputs found

    Giant electro-optic effect in Ge/SiGe coupled quantum wells

    Get PDF
    International audienceSilicon-based photonics is now considered as the photonic platform for the next generation of on-chip communications. However, the development of compact and low power consumption optical modulators is still challenging. Here we report a giant electro-optic effect in Ge/SiGe coupled quantum wells. This promising effect is based on an anomalous quantum-confined Stark effect due to the separate confinement of electrons and holes in the Ge/SiGe coupled quantum wells. This phenomenon can be exploited to strongly enhance optical modulator performance with respect to the standard approaches developed so far in silicon photonics. We have measured a refractive index variation up to 2.3 × 10 −3 under a bias voltage of 1.5 V, with an associated modulation efficiency V π L π of 0.046 V cm. This demonstration paves the way for the development of efficient and high-speed phase modulators based on the Ge/SiGe material system. Silicon photonics has generated strong advances in recent years for on-chip optical communications. Silicon based-optoelectronic devices have been intensively studied and the recent advances proved the capability of silicon photonics to offer some viable solutions for many applications including optical telecommunications and optical interconnects. In this context Ge rich-Ge/SiGe quantum wells (QW) have received a growing interest since the first demonstration of the quantum-confined Stark effect (QCSE) in these structures in 200

    Staphylococcus aureus nosocomial infections: The role of a rapid and low-cost characterization for the establishment of a surveillance system

    Get PDF
    Continuous surveillance on resistance patterns and characterization of Staphylococcus aureus represent simple and low-cost techniques to understand and evaluate the effectiveness of infection control and antimicrobial prescribing measures. In this study we analyzed the antibiotic susceptibility and trends for S. aureus strains collected from bacteraemia cases in a five year period. Between 2004 and 2008 we noted a progressive decrease in the number of S. aureus isolates compared to all pathogens from clinical specimens and S. aureus bloodstream infections (BSI) reflected a similar trend. In particular we analyzed 185 isolates from blood cultures: 89 isolates were MSSA and 96 isolates were MRSA. Molecular SCCmec typing of these strains showed an absolute prevalence of types I and II, whereas five spa types from 96 isolates were obtained. Resistance pattern analysis allowed us to place MRSA strains into 12 antibiotypes and the major antibiotype was resistant to penicillin, gentamicin, erythromycin, clindamycin and ciprofloxacin. The predominant antibiotype among the MSSA isolates was resistant only to penicillin. In addition, 19.1% of MSSA are susceptible to all antibiotics tested. We also found a close association between antibiotyping 1 and genotyping t002/SCCmecI of MRSA strains, suggesting a nosocomial scenario dominated by a few particular clones

    Benchmarking the sustainable manufacturing paradigm via automatic analysis and clustering of scientific literature: A perspective from Italian technologists

    Get PDF
    The number of scientific papers in the field of Sustainable Manufacturing (SM) shows a strong growth of interest in this topic in the last 20 years. Despite this huge number of publications, a clear statement of the profound meaning of Sustainable Manufacturing, or at least a strong theoretical support, is still missing. The 6R framework seems to be a first attempt to rationalize this issue, as it is an axiomatic identification of its true nature. Recognizing the pursuing of one or more of the Reduce-Recycle-Reuse-Recover-Redesign-Remanufacture principles allows users to identify if any manufacturing action is in the right direction of sustainability. In the paper, the authors speculate on the use of this framework and its possible extension by referring to all the existing scientific contributions on Sustainable Manufacturing in the SCOPUS® databases as a source of data. Starting from the measurement of the distribution of the scientific papers allocated onto the 6Rs dimensions, by using both author keywords and automatically extracted multiword from texts, the distribution of the scientific papers among the 6R was derived. A new framework is proposed based on analytical text tools to compare the affinity of the applied research activities of the Italian Technologist network SOSTENERE to sustainable manufacturing, and provide also a benchmarking view to describe the Italian way to SM with respect to the rest of existing applications

    Benchmarking the sustainable manufacturing paradigm via automatic analysis and clustering of scientific literature: A perspective from Italian technologists

    Get PDF
    The number of scientific papers in the field of Sustainable Manufacturing (SM) shows a strong growth of interest in this topic in the last 20 years. Despite this huge number of publications, a clear statement of the profound meaning of Sustainable Manufacturing, or at least a strong theoretical support, is still missing. The 6R framework seems to be a first attempt to rationalize this issue, as it is an axiomatic identification of its true nature. Recognizing the pursuing of one or more of the Reduce-Recycle-Reuse-Recover-Redesign-Remanufacture principles allows users to identify if any manufacturing action is in the right direction of sustainability. In the paper, the authors speculate on the use of this framework and its possible extension by referring to all the existing scientific contributions on Sustainable Manufacturing in the SCOPUS® databases as a source of data. Starting from the measurement of the distribution of the scientific papers allocated onto the 6Rs dimensions, by using both author keywords and automatically extracted multiword from texts, the distribution of the scientific papers among the 6R was derived. A new framework is proposed based on analytical text tools to compare the affinity of the applied research activities of the Italian Technologist network SOSTENERE to sustainable manufacturing, and provide also a benchmarking view to describe the Italian way to SM with respect to the rest of existing applications

    SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR) approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the <it>VPREB1 </it>qPCR marker was pointed out.</p> <p>Methods</p> <p>A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH) was used for confirmation.</p> <p>Results</p> <p>qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The <it>VPREB1 </it>gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the <it>VPREB1 </it>gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the <it>VPREB1 </it>marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion.</p> <p>Conclusions</p> <p>Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the <it>VPREB1 </it>marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations.</p

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10&nbsp;years; 78.2% included were male with a median age of 37&nbsp;years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Strong electro-refractive effect in Ge/SiGe coupled quantum wells

    No full text
    International audienceIn this work we investigate the electro-refractive effect in Ge/SiGe coupled quantum wells. An effective index variation of 2.3 x 10-3 has been measured at 1.5 V bias in a planar waveguide, with an associated figure of merit V L of 0.046 Vcm

    Giant electro-optic effect in Ge/SiGe coupled quantum wells

    No full text
    International audienceSilicon-based photonics is now considered as the photonic platform for the next generation of on-chip communications. However, the development of compact and low power consumption optical modulators is still challenging. Here we report a giant electro-optic effect in Ge/SiGe coupled quantum wells. This promising effect is based on an anomalous quantum-confined Stark effect due to the separate confinement of electrons and holes in the Ge/SiGe coupled quantum wells. This phenomenon can be exploited to strongly enhance optical modulator performance with respect to the standard approaches developed so far in silicon photonics. We have measured a refractive index variation up to 2.3 × 10 −3 under a bias voltage of 1.5 V, with an associated modulation efficiency V π L π of 0.046 V cm. This demonstration paves the way for the development of efficient and high-speed phase modulators based on the Ge/SiGe material system. Silicon photonics has generated strong advances in recent years for on-chip optical communications. Silicon based-optoelectronic devices have been intensively studied and the recent advances proved the capability of silicon photonics to offer some viable solutions for many applications including optical telecommunications and optical interconnects. In this context Ge rich-Ge/SiGe quantum wells (QW) have received a growing interest since the first demonstration of the quantum-confined Stark effect (QCSE) in these structures in 200

    Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures

    No full text
    Hairy root (HR) cultures represent an attractive platform for the production of heterologous proteins, due to the possibility of secreting the molecule of interest in the culture medium. The main limitation is the low accumulation yields of heterologous proteins. The aim of this study is to enhance the accumulation of a tumor‐targeting antibody with a human‐compatible glycosylation profile in HR culture medium. To this aim, the authors produce Nicotiana benthamiana HR cultures expressing the red fluorescent protein (RFP) to easily screen for different auxins able to induce heterologous protein secretion in the medium. The hormone 2,4‐dichlorophenoxyacetic acid (2,4‐D) is found to induce high accumulation levels (334 mg L−1) of RFP in the culture medium. The same protocol is used to improve the secretion of the tumor‐targeting, CD20‐specific 2B8‐FcΔXF recombinant antibody from glyco‐engineered ΔXTFT N. benthamiana HR cultures. The addition of 2,4‐D determine a 28‐fold increase of the accumulation of fully functional 2B8‐FcΔXF in the culture medium, at levels of ≈16 mg L−1. Antibody N‐glycosylation profiling reveal the prominent occurrence of GnGn structures and low levels of xylose‐ and fucose‐containing counterparts. This result is the first example of the expression of an engineered anti‐CD20 antibody with a scFv‐Fc format at high levels in HR
    corecore