14 research outputs found

    Circulating hsa-miR-5096 predicts 18F-FDG PET/CT positivity and modulates somatostatin receptor 2 expression: a novel miR-based assay for pancreatic neuroendocrine tumors

    Get PDF
    Gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs) are rare diseases encompassing pancreatic (PanNETs) and ileal NETs (SINETs), characterized by heterogeneous somatostatin receptors (SSTRs) expression. Treatments for inoperable GEP-NETs are limited, and SSTR-targeted Peptide Receptor Radionuclide Therapy (PRRT) achieves variable responses. Prognostic biomarkers for the management of GEP-NET patients are required. 18F-FDG uptake is a prognostic indicator of aggressiveness in GEP-NETs. This study aims to identify circulating and measurable prognostic miRNAs associated with 18FFDG- PET/CT status, higher risk and lower response to PRRT

    Dendritic cell vaccination in metastatic melanoma turns \u201cnon-T cell inflamed\u201d into \u201cT-cell inflamed\u201d tumors

    Get PDF
    Dendritic cell (DC)-based vaccination effectively induces anti-tumor immunity, although in the majority of cases this does not translate into a durable clinical response. However, DC vaccination is characterized by a robust safety profile, making this treatment a potential candidate for effective combination cancer immunotherapy. To explore this possibility, understanding changes occurring in the tumor microenvironment (TME) upon DC vaccination is required. In this line, quantitative and qualitative changes in tumor-infiltrating T lymphocytes (TILs) induced by vaccination with autologous tumor lysate/homogenate loaded DCs were investigated in a series of 16 patients with metastatic melanoma. Immunohistochemistry for CD4, CD8, Foxp3, Granzyme B (GZMB), PDL1, and HLA class I was performed in tumor biopsies collected before and after DC vaccination. The density of each marker was quantified by automated digital pathology analysis on whole slide images. Co-expression of markers defining functional phenotypes, i.e., Foxp3+ regulatory CD4+ T cells (Treg) and GZMB+ cytotoxic CD8+ T cells, was assessed with sequential immunohistochemistry. A significant increase of CD8+ TILs was found in post-vaccine biopsies of patients who were not previously treated with immune-modulating cytokines or Ipilimumab. Interestingly, along with a maintained tumoral HLA class I expression, after DC vaccination we observed a significant increase of PDL1+ tumor cells, which significantly correlated with intratumoral CD8+ T cell density. This observation might explain the lack of a significant concurrent cytotoxic reactivation of CD8+ T cell, as measured by the numbers of GZMB+ T cells. Altogether these findings indicate that DC vaccination exerts an important role in sustaining or de novo inducing a T cell inflamed TME. However, the strength of the intratumoral T cell activation detected in post-DC therapy lesions is lessened by an occurring phenomenon of adaptive immune resistance, yet the concomitant PDL1 up-regulation. Overall, this study sheds light on DC immunotherapy-induced TME changes, lending the rationale for the design of smarter immune-combination therapies

    Stability Program in Dendritic Cell Vaccines: A “Real-World” Experience in the Immuno-Gene Therapy Factory of Romagna Cancer Center

    Get PDF
    Advanced therapy medical products (ATMPs) are rapidly growing as innovative medicines for the treatment of several diseases. Hence, the role of quality analytical tests to ensure consistent product safety and quality has become highly relevant. Several clinical trials involving dendritic cell (DC)-based vaccines for cancer treatment are ongoing at our institute. The DC-based vaccine is prepared via CD14+ monocyte differentiation. A fresh dose of 10 million DCs is administered to the patient, while the remaining DCs are aliquoted, frozen, and stored in nitrogen vapor for subsequent treatment doses. To evaluate the maintenance of quality parameters and to establish a shelf life of frozen vaccine aliquots, a stability program was developed. Several parameters of the DC final product at 0, 6, 12, 18, and 24 months were evaluated. Our results reveal that after 24 months of storage in nitrogen vapor, the cell viability is in a range between 82% and 99%, the expression of maturation markers remains inside the criteria for batch release, the sterility tests are compliant, and the cell costimulatory capacity unchanged. Thus, the data collected demonstrate that freezing and thawing do not perturb the DC vaccine product maintaining over time its functional and quality characteristics

    Molecular Determinants of Soft Tissue Sarcoma Immunity: Targets for Immune Intervention

    No full text
    Soft tissue sarcomas (STSs) are a family of rare malignant tumors encompassing more than 80 histologies. Current therapies for metastatic STS, a condition that affects roughly half of patients, have limited efficacy, making innovative therapeutic strategies urgently needed. From a molecular point of view, STSs can be classified as translocation-related and those with a heavily rearranged genotype. Although only the latter display an increased mutational burden, molecular profiles suggestive of an “immune hot” tumor microenvironment are observed across STS histologies, and response to immunotherapy has been reported in both translocation-related and genetic complex STSs. These data reinforce the notion that immunity in STSs is multifaceted and influenced by both genetic and epigenetic determinants. Cumulative evidence indicates that a fine characterization of STSs at different levels is required to identify biomarkers predictive of immunotherapy response and to discover targetable pathways to switch on the immune sensitivity of “immune cold” tumors. In this review, we will summarize recent findings on the interplay between genetic landscape, molecular profiling and immunity in STSs. Immunological and molecular features will be discussed for their prognostic value in selected STS histologies. Finally, the local and systemic immunomodulatory effects of the targeted drugs imatinib and sunitinib will be discussed

    Evolution of dermatofibrosarcoma protuberans to DFSP-derived fibrosarcoma: An event marked by epithelial-mesenchymal transition-like process and 22q loss

    Get PDF
    Dermatofibrosarcoma protuberans (DFSP) is a rare and indolent cutaneous sarcoma. At times, a fibrosarcomatous transformation marked by a more aggressive clinical behavior may be present. We investigated the natural history and the molecular bases of progression from classic DFSP to the fibrosarcomatous form (FS-DFSP), looking, retrospectively, at the outcome of all patients affected by primary DFSP treated at our institution from 1993 to 2012 and analyzing the molecular profile of 5 DFSPs and 5 FS-DFSPs by an integrated genomics approach (whole transcriptome sequencing, copy number analysis, FISH, qRT-PCR, IHC). The presence of fibrosarcomatous features was identified in 20 (7.6%) patients out of 263 DFSP. All cases were treated with macroscopic complete surgery. A local relapse occurred in 4 of 23 patients who received a microscopic marginal surgery (2 classic DFSP, 2 FS-DFSP), while metastasis affected 2 patients, both FS-DFSP (10% of FS-DFSP), being the first event. DFSP evolution to FS-DFSP was paralleled by a transcriptional reprogramming. The recurrent loss of chromosome 22q appeared to contribute to this phenomenon by promoting the expression of epigenetic regulators, such as EZH2. Loss of the p16/CDKN2A/INK4A locus at 9p was also observed in two FS-DFSP metastatic cases. Implications: FS-DFSP is a rare subgroup among DFSP, with a 10% metastatic risk, that was independent from local recurrence and that was not observed in DFSP, that were all cured by wide surgery. Chromosome 22q deletion might play a role in FS-DFSP, and p16 loss may convey a poor outcome. EZH2 dysregulation was also found and represents a druggable target

    Targeting Immune Regulatory Networks to Counteract Immune Suppression in Cancer

    No full text
    The onset of cancer is unavoidably accompanied by suppression of antitumor immunity. This occurs through mechanisms ranging from the progressive accumulation of regulatory immune cells associated with chronic immune stimulation and inflammation, to the expression of immunosuppressive molecules. Some of them are being successfully exploited as therapeutic targets, with impressive clinical results achieved in patients, as in the case of immune checkpoint inhibitors. To limit immune attack, tumor cells exploit specific pathways to render the tumor microenvironment hostile for antitumor effector cells. Local acidification might, in fact, anergize activated T cells and facilitate the accumulation of immune suppressive cells. Moreover, the release of extracellular vesicles by tumor cells can condition distant immune sites contributing to the onset of systemic immune suppression. Understanding which mechanisms may be prevalent in specific cancers or disease stages, and identifying possible strategies to counterbalance would majorly contribute to improving clinical efficacy of cancer immunotherapy. Here, we intend to highlight these mechanisms, how they could be targeted and the tools that might be available in the near future to achieve this goal

    Complex Immune Contextures Characterise Malignant Peritoneal Mesothelioma: Loss of Adaptive Immunological Signature in the More Aggressive Histological Types

    No full text
    Malignant peritoneal mesothelioma (MpM), arising in the setting of local inflammation, is a rare aggressive tumour with a poor prognosis and limited therapeutic options. The three major MpM histological variants, epithelioid (E-MpMs), biphasic, and sarcomatoid MpMs (S-MpMs), are characterised by an increased aggressiveness and enhanced levels of EZH2 expression. To investigate the MpM immune contexture along the spectrum of MpM histotypes, an extended in situ analysis was performed on a series of 14 cases. Tumour-infiltrating immune cells and their functionality were assessed by immunohistochemistry, immunofluorescence, qRT-PCR, and flow cytometry analysis. MpMs are featured by a complex immune landscape modulated along the spectrum of MpM variants. Tumour-infiltrating T cells and evidence for pre-existing antitumour immunity are mainly confined to E-MpMs. However, Th1-related immunological features are progressively impaired in the more aggressive forms of E-MpMs and completely lost in S-MpM. Concomitantly, E-MpMs show also signs of active immune suppression, such as the occurrence of Tregs and Bregs and the expression of the immune checkpoint inhibitory molecules PD1 and PDL1. This study enriches the rising rationale for immunotherapy in MpM and points to the E-MpMs as the most immune-sensitive MpM histotypes, but it also suggests that synergistic interventions aimed at modifying the tumour microenvironment (TME) should be considered to make immunotherapy beneficial for these patients
    corecore