1,719 research outputs found

    Discovery of interstellar isocyanogen (CNCN): further evidence that dicyanopolyynes are abundant in space

    Full text link
    It is thought that dicyanopolyynes could be potentially abundant interstellar molecules, although their lack of dipole moment makes it impossible to detect them through radioastronomical techniques. Recently, the simplest member of this chemical family, cyanogen (NCCN), was indirectly probed for the first time in interstellar space through the detection of its protonated form toward the dense clouds L483 and TMC-1. Here we present a second firm evidence of the presence of NCCN in interstellar space, namely the detection of the metastable and polar isomer isocyanogen (CNCN). This species has been identified in L483 and tentatively in TMC-1 by observing various rotational transitions in the 3 mm band with the IRAM 30m telescope. We derive beam-averaged column densities for CNCN of 1.6e12 cm-2 in L483 and 9e11 cm-2 in TMC-1, which imply fractional abundances relative to H2 in the range (5-9)e-11. While the presence of NCCN in interstellar clouds seems out of doubt owing to the detection of NCCNH+ and CNCN, putting tight constraints on its abundance is still hampered by the poor knowledge of the chemistry that links NCCN with NCCNH+ and especially with CNCN. We estimate that NCCN could be fairly abundant, in the range 1e-9 - 1e-7 relative to H2, as other abundant nitriles like HCN and HC3N.Comment: Accepted for publication in ApJ Letter

    Detection of interstellar HCS and its metastable isomer HSC: new pieces in the puzzle of sulfur chemistry

    Full text link
    We present the first identification in interstellar space of the thioformyl radical (HCS) and its metastable isomer HSC. These species were detected toward the molecular cloud L483 thanks to observations carried out with the IRAM 30m telescope in the 3 mm band. We derive beam-averaged column densities of 7e12 cm-2 for HCS and 1.8e11 cm-2 for HSC, which translate to fractional abundances relative to H2 of 2e-10 and 6e-12, respectively. Although the amount of sulfur locked by these radicals is low, their detection allows to put interesting constraints on the chemistry of sulfur in dark clouds. Interestingly, the H2CS/HCS abundance ratio is found to be quite low, around 1, in contrast with the oxygen analogue case, in which the H2CO/HCO abundance ratio is around 10 in dark clouds. Moreover, the radical HCS is found to be more abundant than its oxygen analogue, HCO. The metastable species HOC, the oxygen analogue of HSC, has not been yet observed in space. These observational constraints are confronted with the outcome of a recent model of the chemistry of sulfur in dark clouds. The model underestimates the fractional abundance of HCS by at least one order of magnitude, overestimates the H2CS/HCS abundance ratio, and does not provide an abundance prediction for the metastable isomer HSC. These observations should prompt a revision of the chemistry of sulfur in interstellar clouds.Comment: Accepted for publication in A&A Letter

    A phytosociological survey of the boreal forest (Vaccinio-Piceetea) in North America

    Get PDF
    A survey of syntaxa of vegetation of North American boreal forests (class Vaccinio-Piceetea) is presented. This phytosociological survey, carried out combining the Braun-Blanquet method with numerical syntaxonomical analyses (cluster and correspondence analysis), describes the associations of the North American boreal forests, which have several species, varieties or vicariant species in common with their Eurasian counterparts, and can be placed in the class Vaccinio-Piceetea. By means of tabular and multivariate analyses, 2084 North American relevés were compared with 3273 relevés from European, Japanese and Korean boreal forest, to describe and typify 4 orders, 10 alliances and 37 associations. Diagnostic tables, ordination, clustering, and climatic, edaphic and biogeographical data were used to show floristic affinities among these syntaxa and interpret their distribution areas. Syntaxa were briefly characterized by their floristic composition, physiognomy, succession, zonation, and biogeographical distribution

    Package ecespa

    Get PDF
    Documentation for the R-package "ecespa

    Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach

    Full text link
    Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H2_2O, NH3_3, CO, HCN, CH3_3OH, CH4_4, and N2_2 followed by warm-up, under astrophysically relevant conditions. Only the H2_2O:NH3_3:CO and H2_2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2_2O:NH3_3:CO and H2_2O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase. UV-photoprocessing of H2_2O:NH3_3:CO/H2_2O:HCN ices lead to the formation of OCN−^- as main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV-photoprocessing of realistic simulated ice mantles, might explain the observed abundances of these species in PDRs, hot cores, and dark clouds

    Nascent bipolar outflows associated with the first hydrostatic core candidates Barnard 1b-N and 1b-S

    Full text link
    In the theory of star formation, the first hydrostatic core (FHSC) phase is a critical step in which a condensed object emerges from a prestellar core. This step lasts about one thousand years, a very short time compared with the lifetime of prestellar cores, and therefore is hard to detect unambiguously. We present IRAM Plateau de Bure observations of the Barnard 1b dense molecular core, combining detections of H2CO and CH3OH spectral lines and dust continuum at 2.3" resolution (~ 500 AU). The two compact cores B1b-N and B1b-S are detected in the dust continuum at 2mm, with fluxes that agree with their spectral energy distribution. Molecular outflows associated with both cores are detected. They are inclined relative to the direction of the magnetic field, in agreement with predictions of collapse in turbulent and magnetized gas with a ratio of mass to magnetic flux somewhat higher than the critical value, \mu ~ 2 - 7. The outflow associated with B1b-S presents sharp spatial structures, with ejection velocities of up to ~ 7 kms from the mean velocity. Its dynamical age is estimated to be ~2000 yrs. The B1b-N outflow is smaller and slower, with a short dynamical age of ~1000 yrs. The B1b-N outflow mass, mass-loss rate, and mechanical luminosity agree well with theoretical predictions of FHSC. These observations confirm the early evolutionary stage of B1b-N and the slightly more evolved stage of B1b-S.Comment: 6 pages, 3 figure
    • 

    corecore