25 research outputs found

    The ways our hearts tick together – A vegetative hyperscanning study involving a self-paced interpersonal motor entrainment task

    Full text link
    Cardiac physiological synchrony between two persons is considered to be an important component of social interaction. Yet, the processes underlying physiological synchrony remain unclear. We aim to investigate these processes. 20 dyads (19 men, 21 women, age: mean 23.7, range: 18–35) engaged in a self-paced interpersonal tapping synchronization task under different conditions of blocking sensory communication channels. Applying wavelet transform coherence analysis, a significant increase in heart rate synchronization from baseline to task execution was found while there was no statistically significant difference across conditions. Furthermore, the control analysis, which assessed the synchrony between randomly combined dyads of participants showed no difference from the original dyads’ synchrony. We showed that interindividual cardiac physiological synchrony during self-paced synchronized finger tapping resulted from a task-related stimulus equally shared by all individuals. We hypothesize that by applying mental effort to the task, individuals changed into a similar mental state, altering their cardiac regulation. This so-called psychophysiological mode provoked more uniform, less variable oscillation patterns across all individuals leading to similar heart rate coherence independent of subsequent pairings. With this study, we provide new insights into heart rate coherence and highlight the importance of appropriate study design and control analysis

    Reproducibility and sensitivity of detecting brain activity by simultaneous electroencephalography and near-infrared spectroscopy

    Get PDF
    The aims were (1) to determine the sensitivity and reproducibility to detect the hemodynamic responses and optical neuronal signals to brain stimulation by near-infrared spectroscopy (NIRS) and evoked potentials by electroencephalography (EEG) and (2) to test the effect of novel filters on the signal-to-noise ratio. This was achieved by simultaneous NIRS and EEG measurements in 15 healthy adults during visual stimulation. Each subject was measured three times on three different days. The sensitivity of NIRS to detect hemodynamic responses was 55.2% with novel filtering and 40% without. The reproducibility in single subjects was low. For the EEG, the sensitivity was 86.4% and the reproducibility 57.1%. An optical neuronal signal was not detected, although novel filtering considerably reduced nois

    How our hearts beat together: a study on physiological synchronization based on a self-paced joint motor task

    Get PDF
    Cardiac physiological synchrony is regarded as an important component of social interaction due to its putative role in prosocial behaviour. Yet, the processes underlying physiological synchrony remain unclear. We aim to investigate these processes. 20 dyads (19 men, 21 women, age range 18-35) engaged in a self-paced interpersonal tapping synchronization task under different levels of tapping synchrony due to blocking of sensory communication channels. Applying wavelet transform coherence analysis, significant increases in heart rate synchronization from baseline to task execution were found with no statistically significant difference across conditions. Furthermore, the control analysis, which assessed synchrony between randomly combined dyads of participants showed no difference from the original dyads' synchrony. We showed that interindividual cardiac physiological synchrony during self-paced synchronized finger tapping resulted from a task-related stimulus equally shared by all individuals. We hypothesize that by applying mental effort to the task, individuals changed into a similar mental state, altering their cardiac regulation. This so-called psychophysiological mode provoked more uniform, less variable fluctuation patterns across all individuals leading to similar heart rate coherence independent of subsequent pairings. With this study, we provide new insights into cardiac physiological synchrony and highlight the importance of appropriate study design and control analysis

    Systemic physiology augmented functional near-infrared spectroscopy hyperscanning: a first evaluation investigating entrainment of spontaneous activity of brain and body physiology between subjects.

    Get PDF
    Significance: Functional near-infrared spectroscopy (fNIRS) enables measuring the brain activity of two subjects while they interact, i.e., the hyperscanning approach. Aim: In our exploratory study, we extended classical fNIRS hyperscanning by adding systemic physiological measures to obtain systemic physiology augmented fNIRS (SPA-fNIRS) hyperscanning while blocking and not blocking the visual communication between the subjects. This approach enables access brain-to-brain, brain-to-body, and body-to-body coupling between the subjects simultaneously. Approach: Twenty-four pairs of subjects participated in the experiment. The paradigm consisted of two subjects that sat in front of each other and had their eyes closed for 10 min, followed by a phase of 10 min where they made eye contact. Brain and body activity was measured continuously by SPA-fNIRS. Results: Our study shows that making eye contact for a prolonged time causes significant changes in brain-to-brain, brain-to-body, and body-to-body coupling, indicating that eye contact is followed by entrainment of the physiology between subjects. Subjects that knew each other generally showed a larger trend to change between the two conditions. Conclusions: The main point of this study is to introduce a new framework to investigate brain-to-brain, body-to-body, and brain-to-body coupling through a simple social experimental paradigm. The study revealed that eye contact leads to significant synchronization of spontaneous activity of the brain and body physiology. Our study is the first that employed the SPA-fNIRS approach and showed its usefulness to investigate complex interpersonal physiological changes

    Determination of thoracic and lumbar spinal processes by their percentage position between C7 and the PSIS level

    Get PDF
    Accurate measurements of spinal movement require reliable determination of anatomical landmarks. Current methods of identifying these are not sufficiently reliable or valid for this purpose. A reliable and convenient method of placing markers on selected vertebra is needed to compare measurements between different testers, subjects and sessions

    Effects of contact with a dog on prefrontal brain activity: A controlled trial

    Full text link
    BACKGROUND There is a broad range of known effects of animal contact on human mental and physical health. Neurological correlates of human interaction with animals have been sparsely investigated. We investigated changes in frontal brain activity in the presence of and during contact with a dog. METHODS Twenty-one healthy individuals each participated in six sessions. In three sessions, participants had contact with a dog, and in three control sessions they interacted with a plush animal. Each session had five two-minute phases with increasing intensity of contact to the dog or plush animal from the first to the fourth phase. We measured oxygenated, deoxygenated, and total hemoglobin and oxygen saturation of the blood in the frontal lobe/frontopolar area with functional near-infrared spectroscopy (SenSmart Model X-100) to assess brain activity. FINDINGS In both conditions, the concentration of oxygenated hemoglobin increased significantly from the first to the fourth phase by 2.78 ÎĽmol/l (CI = 2.03-3.53, p < .001). Oxygenated hemoglobin concentration was 0.80 ÎĽmol/l higher in the dog condition compared to in the control condition (CI = 0.27-1.33, p = .004). Deoxygenated-hemoglobin concentration, total hemoglobin concentration, and oxygen saturation showed similar patterns. CONCLUSION Prefrontal brain activation in healthy subjects increased with the rise in interaction closeness with a dog or a plush animal. Moreover, interaction with a dog stimulated more brain activity compared to the control condition, suggesting that interactions with a dog can activate stronger attentional processes and elicit more emotional arousal than interacting with a nonliving stimulus

    Effects of contact with a dog on prefrontal brain activity: a controlled trial

    Get PDF
    Background There is a broad range of known effects of animal contact on human mental and physical health. Neurological correlates of human interaction with animals have been sparsely inves- tigated. We investigated changes in frontal brain activity in the presence of and during con- tact with a dog. Methods Twenty-one healthy individuals each participated in six sessions. In three sessions, partici- pants had contact with a dog, and in three control sessions they interacted with a plush ani- mal. Each session had five two-minute phases with increasing intensity of contact to the dog or plush animal from the first to the fourth phase. We measured oxygenated, deoxygenated, and total hemoglobin and oxygen saturation of the blood in the frontal lobe/frontopolar area with functional near-infrared spectroscopy (SenSmart Model X-100) to assess brain activity. Findings In both conditions, the concentration of oxygenated hemoglobin increased significantly from the first to the fourth phase by 2.78 ÎĽmol/l (CI = 2.03-3.53, p < .001). Oxygenated hemoglo- bin concentration was 0.80 ÎĽmol/l higher in the dog condition compared to in the control con- dition (CI = 0.27-1.33, p = .004). Deoxygenated-hemoglobin concentration, total hemoglobin concentration, and oxygen saturation showed similar patterns. Conclusion Prefrontal brain activation in healthy subjects increased with the rise in interaction closeness with a dog or a plush animal. Moreover, interaction with a dog stimulated more brain activity compared to the control condition, suggesting that interactions with a dog can activate stron- ger attentional processes and elicit more emotional arousal than interacting with a nonliving stimulus

    Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users

    Get PDF
    Cross-modal reorganization in the auditory cortex has been reported in deaf individuals. However, it is not well understood whether this compensatory reorganization induced by auditory deprivation recedes once the sensation of hearing is partially restored through a cochlear implant. The current study used electroencephalography source localization to examine cross-modal reorganization in the auditory cortex of post-lingually deafened cochlear implant users. We analysed visual-evoked potentials to parametrically modulated reversing chequerboard images between cochlear implant users (n = 11) and normal-hearing listeners (n = 11). The results revealed smaller P100 amplitudes and reduced visual cortex activation in cochlear implant users compared with normal-hearing listeners. At the P100 latency, cochlear implant users also showed activation in the right auditory cortex, which was inversely related to speech recognition ability with the cochlear implant. These results confirm a visual take-over in the auditory cortex of cochlear implant users. Incomplete reversal of this deafness-induced cortical reorganization might limit clinical benefit from a cochlear implant and help explain the high inter-subject variability in auditory speech comprehensio

    Neural response during temporal - and spatial luminance contrast processing and its manifestation in the blood-oxygen-level-dependent-signal in striate and extra-striate cortex

    Get PDF
    The primate visual system has been the prime site for investigating the relationship between stimulus property, neural response and blood-oxygen-level-dependent (BOLD)-signal; yet this relationship remains ill-understood. Electrophysiological studies have shown that the ability to visualise a neural response is determined by stimulus property and presentation paradigm. The neural response in the human visual cortex consists of a phasic response processing temporal and tonic response processing spatial luminance contrast. We investigated their influence on the BOLD signal from the visual cortex. To do so, we compared BOLD signal amplitude from BA17 and BA18 of 15 human volunteers to visual patterns varying the size of the active neural population and the discharge activity of this population. The BOLD signal amplitude in both areas reflected the discharge activity of the active neural population but not the size of the active neural population. For identical stimuli, BOLD signal amplitude in BA17 exceeded than that of BA18. This indicates that the BOLD signal reflects the tonic neural neuronal response during spatial luminance contrast processing. The difference in BOLD signal amplitude between BA17 and BA18 is accounted for by differences in neurophysiological and cytoarchitectonic differences between the two areas. Our findings offer an understanding of the relationship between stimulus property, neural response and the BOLD signal by considering the cytoarchitectonic, and neurophysiological make-up between different cortical areas and the influence of a phasic and tonic neural response on local deoxyhaemoglobin concentration. Conversely, differences in BOLD signal between brain structures and stimuli provide cues to the influence of different neurophysiological mechanisms on the neural response

    Modulation of the neuronal response in human primary visual cortex by re-entrant projections during retinal input processing as manifest in the visual evoked potential

    Get PDF
    Initial deflections in the visual evoked potential (VEP) reflect the neuronal process of extracting features from the retinal input; a process not modulated by re-entrant projections. Later deflections in the VEP reflect the neuronal process of combining features into an object, a process referred to as 'object closure' and modulated by re-entrant projections. Our earlier work indicated that the VEP reflects independent neuronal responses processing temporal - and spatial luminance contrast and that these responses arise from an interaction between forward and re-entrant input. In this earlier work, changing the temporal luminance contrast property of a stimulus altered its spatial luminance contrast property. We recorded the VEP in 12 volunteers viewing image pairs of a windmill, regular dartboard or an RMS dartboard rotated by either Π/4, Π/2, 3Π/4 or Π radians with respect to each other. The windmill and regular dartboard had identical white to black ratio, while the two dartboards identical contrast edges per unit area. Rotation varied temporal luminance contrast of a stimulus without affecting its spatial luminance contrast. N75, P100, N135 and P240 amplitude and latency were compared and a source localisation and temporal frequency analysis performed. P100 amplitude signals a neuronal response processing temporal luminance contrast that is modulated by re-entrant projections with fast axonal conduction velocities. N135 and P240 signal the neuronal response processing spatial luminance contrast and is modulated by re-entrant projections with slow axonal conduction velocities. The dorsal stream is interconnected by fast axonal conduction velocities, the ventral stream by slow axonal conduction velocities
    corecore