25 research outputs found

    Core-shifts and proper-motion constraints in the S5 polar cap sample at the 15 and 43 GHz bands

    Get PDF
    We have studied a complete radio sample of active galactic nuclei with the very-long-baseline-interferometry (VLBI) technique and for the first time successfully obtained high-precision phase-delay astrometry at Q band (43 GHz) from observations acquired in 2010. We have compared our astrometric results with those obtained with the same technique at U band (15 GHz) from data collected in 2000. The differences in source separations among all the source pairs observed in common at the two epochs are compatible at the 1σ level between U and Q bands. With the benefit of quasi-simultaneous U and Q band observations in 2010, we have studied chromatic effects (core-shift) at the radio source cores with three different methods. The magnitudes of the core-shifts are of the same order (about 0.1 mas) for all methods. However, some discrepancies arise in the orientation of the core-shifts determined through the different methods. In some cases these discrepancies are due to insufficient signal for the method used. In others, the discrepancies reflect assumptions of the methods and could be explained by curvatures in the jets and departures from conical jets

    Changes in the trajectory of the radio jet in 0735+178?

    Get PDF
    We present multi-epoch 8.4 and 43 GHz Very Long Baseline Array images of the BL Lac object 0735+178. The images confirm the presence of a twisted jet with two sharp apparent bends of 90^{\circ} within two milliarcseconds of the core, resembling a helix in projection. The observed twisted geometry could be the result of precession of the jet inlet, but is more likely produced by pressure gradients in the external medium through which the jet propagates. Quasi-stationary components are observed at the locations of the 90^{\circ} bends, possibly produced by differential Doppler boosting. Identification of components across epochs, since the earliest VLBI observations of this source in 1979.2, proves difficult due to the sometimes large time gaps between observations. One possible identification suggests the existence of superluminal components following non--ballistic trajectories with velocities up to 11.6±0.6h651c11.6\pm 0.6 h_{65}^{-1} c. However, in images obtained after mid-1995, components show a remarkable tendency to cluster near several jet positions, suggesting a different scenario in which components have remained nearly stationary in time at least since mid-1995. Comparison with the earlier published data, covering more than 19 years of observations, suggests a striking qualitative change in the jet trajectory sometime between mid-1992 and mid-1995, with the twisted jet structure with stationary components becoming apparent only at the later epochs. This would require a re-evaluation of the physical parameters estimated for 0735+178, such as the observing viewing angle, the plasma bulk Lorentz factor, and those deduced from these.Comment: 18 pages, 5 figures, accepted for publication in MNRA

    The milliarcsecond-scale radio structure of AB Doradus A

    Get PDF
    Context. The fast rotator, pre-main sequence star AB Dor A is a strong and persistent radio emitter. The extraordinary coronal flaring activity is thought to be the origin of compact radio emission and other associated phenomena, such as large slingshot prominences. Aims. We aim to investigate the radio emission mechanism and the milliarcsecond radio structure around AB Dor A. Methods. We performed phase-referenced VLBI observations at 22.3 GHz, 8.4 GHz, and 1.4 GHz over more than one decade using the Australian VLBI array. Results. Our 8.4 GHz images show a double core-halo morphology, similar at all epochs, with emission extending at heights between 5 and 18 stellar radii. Furthermore, the sequence of the 8.4 GHz maps shows a clear variation of the source structure within the observing time. However, images at 1.4 GHz and 22.3 GHz are compatible with a compact source. The phase-reference position at 8.4 GHz and 1.4 GHz are coincident with those expected from the well-known milliarcsecond-precise astrometry of this star, meanwhile the 22.3 GHz position is 4σ off the prediction in the north-west direction. The origin of this offset is still unclear. Conclusions. We have considered several models to explain the morphology and evolution of the inner radio structure detected in AB Dor A. These models include emission from the stellar polar caps, a flaring, magnetically-driven loop structure, and the presence of helmet streamers. We also investigated a possible close companion to AB Dor A. Our results confirm the extraordinary coronal magnetic activity of this star, capable of producing compact radio structures at very large heights that have so far only been seen in binary interacting systems.J.B.C., R.A., J.C.G., and J.M.M. were partially supported by the Spanish MINECO projects AYA2012-38491-C02-01, AYA2015-63939- C2-2-P, PGC2018-098915-B-C22 and by the Generalitat Valenciana projects PROMETEO/2009/104 and PROMETEOII/2014/05

    Modeling the Radio and X-ray Emission of SN 1993J and SN 2002ap

    Full text link
    Modeling of radio and X-ray observations of supernovae interacting with their circumstellar media are discussed, with special application to SN 1993J and SN 2002ap. We emphasize the importance of including all relevant physical mechanisms, especially for the modeling of the radio light curves. The different conclusions for the absorption mechanism (free-free or synchrotron self-absorption), as well as departures from an ρr2\rho \propto r^{-2} CSM, as inferred by some authors, are discussed in detail. We conclude that the evidence for a variation in the mass loss rate with time is very weak. The results regarding the efficiencies of magnetic field generation and relativistic particle acceleration are summarized.Comment: 10 pages, 2 figures. Uses svmult.cls. To appear in proceedings of IAU Colloquium 192 "Supernovae (10 years of SN 1993J)", April 2003, Valencia, Spain, eds. J. M. Marcaide and K. W. Weile

    On the spherical-axial transition in supernova remnants

    Full text link
    A new law of motion for supernova remnant (SNR) which introduces the quantity of swept matter in the thin layer approximation is introduced. This new law of motion is tested on 10 years observations of SN1993J. The introduction of an exponential gradient in the surrounding medium allows to model an aspherical expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR, SN1987a, are modeled. In the case of SN1987a the three observed rings are simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics & Space Science in the year 201

    Radio-Size Estimates of SN 1993J

    Get PDF
    Supernova 1993J (SN 1993J) in M81, now classified as Type IIb, is a strongly emitting radio supernova whose size can be resolved and whose growth can be monitored with the technique of very long baseline interferometry (VLBI). The results could provide important information about the circumstellar matter and the degree of asymmetry of the explosion. For several models of the emission of the radio supernova, we report estimates of its angular sizes 29 and 36 days after explosion at the wavelengths of 3.6 and 1.3 cm, respectively. These results, which correspond to our first epochs in an ongoing effort to determine the supernova structure and its growth, slightly favor an optically thick uniform disk model, given the recently derived Cepheid distance to M81 and the estimated maximum supernova expansion speed. Further VLBI observations, combined with the expansion-speed data, may yield an independent estimate of the distance to M81.This work was supported in part by the Spanish DGICYT grant PB89-009 and in part by NSF grant AST 9303527. We thank Kurt Weiler for a very careful review of this paper and N. Renzetti and P. Wolken for their extraordinary efforts in arranging for our use of the DSN antenn

    Supernova Interaction with a Circumstellar Medium

    Get PDF
    The explosion of a core collapse supernova drives a powerful shock front into the wind from the progenitor star. A layer of shocked circumstellar gas and ejecta develops that is subject to hydrodynamic instabilities. The hot gas can be observed directly by its X-ray emission, some of which is absorbed and re-radiated at lower frequencies by the ejecta and the circumstellar gas. Synchrotron radiation from relativistic electrons accelerated at the shock fronts provides information on the mass loss density if free-free absorption dominates at early times or the size of the emitting region if synchrotron self-absorption dominates. Analysis of the interaction leads to information on the density and structure of the ejecta and the circumstellar medium, and the abundances in these media. The emphasis here is on the physical processes related to the interaction.Comment: 22 pages, 7 figures, to appear as a Chapter in "Supernovae and Gamma-Ray Bursts," edited by K. W. Weiler (Springer-Verlag

    Time-Dependent Models for a decade of SN 1993J

    Full text link
    A classical and a relativistic law of motion for a supernova remnant (SNR) are deduced assuming an inverse power law behavior for the density of the interstellar medium and applying the thin layer approximation. A third equation of motion is found in the framework of relativistic hydrodynamics with pressure, applying momentum conservation. These new formulas are calibrated against a decade of observations of \snr. The existing knowledge of the diffusive processes of ultrarelativistic electrons is reviewed in order to explain the behavior of the `U' shaped profile of intensity versus distance from the center of SN 1993J.Comment: 20 pages 19 figures, Accepted for pubblication in Astrophysics and Space Science 201

    The sub-arcsecond structure of 4C39.25

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    The atmospheric structure and fundamental parameters of Red Supergiants

    No full text
    We present studies of the atmospheric structure and fundamental properties of the red supergiants (RSGs) VY CMa, AH Sco, UY Sct, and KW Sgr based on near-infrared K-band interferometry obtained with the VLTI/AMBER instrument with a spectral resolution of 1500. In our visibility data, we observe the presence of molecular layers of water and CO in extended atmospheres. For a uniform disk modeling, we observe size increases in the water band centered at 1.9 μm and in the CO band at 2.3–2.5 μm, with respect to the near-continuum bandpass (2.20–2.25 μm). With our spectral resolution, we obtain diameters in the near-continuum, that are free from contamination by molecular layers. Using PHOENIX atmosphere models, we estimate Rosseland-mean photospheric angular diameters of VY CMa, AH Sco, UY Sct, and KW Sgr of 11.13 ± 0.3mas, 5.81 ± 0.15mas, 5.48 ± 0.10mas, and 3.91 ± 0.25mas, respectively. We estimate radii and effective temperatures, and place the stars in the HR diagram. The PHOENIX atmosphere models predict the spectra and the continuum visibility values, but do not predict the molecular layers visibility well: The model atmosphere is too compact when compared with the observations. This may be caused by pulsation and/or convection, which are not included in the models
    corecore