16 research outputs found

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics

    Get PDF
    The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes

    Individual Video Training iVT and Annotating Academic Videos AAV: two complementing technologies

    No full text
    Individual Video Training iVT and Annotating Academic Videos AAV: two complementing technologies 1. Recording communication skills training sessions and reviewing them by oneself, with peers, and with tutors has become standard in medical education. Increasing numbers of students paired with restrictions of financial and human resources create a big obstacle to this important teaching method. 2. Everybody who wants to increase efficiency and effectiveness of communication training can get new ideas from our technical solution. 3. Our goal was to increase the effectiveness of communication skills training by supporting self, peer and tutor assessment over the Internet. Two technologies of SWITCH, the national foundation to support IT solutions for Swiss universities, came handy for our project. The first is the authentication and authorization infrastructure providing all Swiss students with a nationwide single login. The second is SWITCHcast which allows automated recording, upload and publication of videos in the Internet. Students start the recording system by entering their single login. This automatically links the video with their password. Within a few hours, they find their video password protected on the Internet. They now can give access to peers and tutors. Additionally, an annotation interface was developed. This software has free text as well as checklist annotations capabilities. Tutors as well as students can create checklists. Tutor’s checklists are not editable by students. Annotations are linked to tracks. Tracks can be private or public. Public means visible to all who have access to the video. Annotation data can be exported for statistical evaluation. 4. The system was well received by students and tutors. Big numbers of videos were processed simultaneously without any problems. 5. iVT http://www.switch.ch/aaa/projects/detail/UNIBE.7 AAV http://www.switch.ch/aaa/projects/detail/ETHZ.

    Asymmetric segregation on spindle poles of the Schizosaccharomyces pombe septum-inducing protein kinase Cdc7p

    No full text
    Schizosaccharomyces pombe divides by means of a centrally placed division septum. The initiation of septation must be tightly coordinated with events in mitosis, as premature formation of the septum can lethally cut the undivided nucleus. The Spg1p GTPase and the Cdc7p kinase, with which it interacts, play a central role in signaling the initiation of septum formation. Loss-of-function mutations in either gene prevent septation, whereas inappropriate activation of Spg1p can induce septum formation from G(1) or G(2) interphase cells. Increased expression of either gene leads to multiple rounds of septation without cell cleavage, emphasizing the need for precise cell cycle regulation of their activity. To understand the mechanisms underlying this regulation, we have investigated whether these key initiators of septum formation are controlled by changes in their activity and/or location during mitosis and cytokinesis. We demonstrate that Spg1p localizes to the spindle pole body in interphase and to both spindle poles during mitosis. In contrast, Cdc7p shows no discrete localization during interphase, but early in mitosis it associates with both spindle pole bodies and, as the spindle extends, is seen on only one pole of the spindle during anaphase B. Spg1p activity is required for localization of Cdc7p in vivo but not for its kinase activity in vitro. Staining with an antiserum that recognizes preferentially GDP–Spg1p indicates that activated GTP–Spg1p predominates during mitosis when Cdc7p is associated with the spindle pole body. Furthermore, staining with this antibody shows that asymmetric distribution of Cdc7p may be mediated by inactivation of Spg1p on one spindle pole. Deregulated septation in mutant cells correlates with segregation of Cdc7p to both spindle poles

    Nationwide introduction of a new competency framework for undergraduate medical curricula: a collaborative approach.

    Get PDF
    Switzerland recently introduced PROFILES, a revised version of its national outcomes reference framework for the undergraduate medical curriculum. PROFILES is based on a set of competencies adapted from the CanMEDS framework and nine entrustable professional activities (EPAs) that students have to be able to perform autonomously in the context of a predefined list of clinical situations. The nationwide implementation of such a competency- and EPA-based approach to medical education is a complex process that represents an important change to the organisation of undergraduate training in the various medical schools. At the same time, the concepts underlying PROFILES also have to be reflected at the level of the Federal Licencing Examination (FLE) and the national accreditation process. The vice-deans for education mandated a Swiss Working Group for PROFILES Implementation (SWGPI) to elaborate a guide presenting the principles and best practices based on the current scientific literature, to ensure the coherence between the future developments of the medical curricula and the evolution of the FLE, and to propose a coordinated research agenda to evaluate the implementation process. On the basis of the literature and analysis of our national context, we determined the key elements important for a successful implementation. They can be grouped into several areas including curricular design and governance, the assessment system and entrustment process, faculty development and change management. We also identified two dimensions that will be of particular importance to create synergies and facilitate exchange between the medical schools: a systematic approach to curriculum mapping and the longitudinal integration of an e-portfolio to support the student learning process. The nationwide collaborative approach to define strategies and conditions for the implementation of a new reference framework has allowed to develop a shared understanding of the implications of PROFILES, to promote the establishment of Swiss mapping and e-portfolio communities, and to establish the conditions necessary for ensuring the continuous alignment of the FLE with the evolving medical curricula

    Systematic functional analysis of the Caenorhabditis elegans genome using RNAi

    No full text
    A principal challenge currently facing biologists is how to connect the complete DNA sequence of an organism to its development and behaviour. Large-scale targeted-deletions have been successful in defining gene functions in the single-celled yeast Saccharomyces cerevisiae, but comparable analyses have yet to be performed in an animal. Here we describe the use of RNA interference to inhibit the function of ∼86% of the 19,427 predicted genes of C. elegans. We identified mutant phenotypes for 1,722 genes, about two-thirds of which were not previously associated with a phenotype. We find that genes of similar functions are clustered in distinct, multi-megabase regions of individual chromosomes; genes in these regions tend to share transcriptional profiles. Our resulting data set and reusable RNAi library of 16,757 bacterial clones will facilitate systematic analyses of the connections among gene sequence, chromosomal location and gene function in C. elegans.R.S.K. was supported by a Howard Hughes Medical Institute Predoctoral Fellowship; A.G.F. by a US Army Breast Cancer Research Fellowship; Y.D., R.D., M.G., D.P.W. and P.Z. by the Wellcome Trust; G.P. by the Canadian Institute of Health Research and the Wellcome Trust; A.K. by the European Molecular Biology Laboratory; N.L.B. by the European Molecular Biology Organization; S.M. by the Centro de Investigacion del Cancer; M.S. by a Swiss National Science Foundation fellowship and J.A. by a Wellcome Trust Senior Research Fellowship.Peer Reviewe
    corecore