22 research outputs found

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Association between gene expression profile of the primary tumor and chemotherapy response of metastatic breast cancer

    No full text
    Abstract Background To better predict the likelihood of response to chemotherapy, we have conducted a study comparing the gene expression patterns of primary tumours with their corresponding response to systemic chemotherapy in the metastatic setting. Methods mRNA expression profiles of breast carcinomas of patients that later developed distant metastases were analyzed using supervised and non-supervised classification techniques to identify predictors of response to chemotherapy. The top differentially expressed genes between the responders and non-responders were identified and further explored. An independent dataset which was generated to predict response to neo-adjuvant CT was utilized for the purpose of validation. Response to chemotherapy was also correlated to the clinicopathologic characteristics, molecular subtypes, metastatic behavior and survival outcomes. Results Anthracycline containing regimens were the most common first line treatment (58.4%), followed by non-anthracycline/non-taxane containing (25.8%) and taxane containing (15.7%) regimens. Response was achieved in 41.6% of the patients to the first line CT and in 21.8% to second line CT. Response was not found to be significantly correlated to tumour type, grade, lymph node status, ER and PR status. Patients with HER2+ tumours showed better response to anthracycline containing therapy (p: 0.002). Response to first and second line chemotherapy did not differ among gene expression based molecular subtypes (p: 0.236 and p: 0.20). Using supervised classification, a 14 gene response classifier was identified. This 14-gene predictor could successfully predict the likelihood of better response to first and second line CT (p: <.0001 and p: 0.761, respectively) in the training set. However, the predictive value of this gene set in data of response to neoadjuvant chemotherapy could not be validated. Conclusions To our knowledge, this is the first study revealing the relation between gene expression profiles of the primary tumours and their chemotherapy responsiveness in the metastatic setting. In contrast to the findings for neoadjuvant chemotherapy treatment, there was no association of molecular subtype with response to chemotherapy in the metastatic setting. Using supervised classification, we identified a classifier of chemotherapy response; however, we could not validate this classifier using neoadjuvant response data. Trial registration Non applicable. Subjects were retrospectively registered

    Genes that mediate breast cancer metastasis to the brain

    No full text
    The molecular basis for breast cancer metastasis to the brain is largely unknown(1,2). Brain relapse typically occurs years after the removal of a breast tumour(2-4), suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha 2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver(5,6), suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain(7), the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interaction

    High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundance of stroma. Multiple molecular classification efforts have identified a mesenchymal tumor subtype that is consistently characterized by high-grade growth and poor clinical outcome. The relation between PDAC stroma and tumor subtypes is still unclear. Here, we aimed to identify how PDAC cells instruct the main cellular component of stroma, the pancreatic stellate cells (PSCs). We found in primary tissue that high-grade PDAC had reduced collagen deposition compared to low-grade PDAC. Xenografts and organotypic co-cultures established from mesenchymal-like PDAC cells featured reduced collagen and activated PSC content. Medium transfer experiments using a large set of PDAC cell lines revealed that mesenchymal-like PDAC cells consistently downregulated ACTA2 and COL1A1 expression in PSCs and reduced proliferation. We identified colony-stimulating factor 1 as the mesenchymal PDAC-derived ligand that deactivates PSCs, and inhibition of its receptor CSF1R was able to counteract this effect. In conclusion, high-grade PDAC features stroma that is low in collagen and activated PSC content, and targeting CSF1R offers direct options to maintain a tumor-restricting microenvironment

    Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors

    No full text
    The increasing incidence of breast cancer brain metastasis in patients with otherwise well-controlled systemic cancer is a key challenge in cancer research. It is necessary to understand the properties of brain-tropic tumor cells to identify patients at risk for brain metastasis. Here we attempt to identify functional phenotypes that might enhance brain metastasis. To obtain an accurate classification of brain metastasis proteins, we mapped organ-specific brain metastasis gene expression signatures onto an experimental protein-protein interaction network based on brain metastatic cells. Thirty-seven proteins were differentially expressed between brain metastases and non-brain metastases. Analysis of metastatic tissues, the use of bioinformatic approaches, and the characterization of protein expression in tumors with or without metastasis identified candidate markers. A multivariate analysis based on stepwise logistic regression revealed GRP94, FN14, and inhibin as the best combination to discriminate between brain and non-brain metastases (ROC AUC = 0.85, 95% CI = 0.73 to 0.96 for the combination of the three proteins). These markers substantially improve the discrimination of brain metastasis compared with ErbB-2 alone (AUC = 0.76, 95% CI = 0.60 to 0.93). Furthermore, GRP94 was a better negative marker (LR = 0.16) than ErbB-2 (LR = 0.42). We conclude that, in breast carcinomas, certain proteins associated with the endoplasmic reticulum stress phenotype are candidate markers of brain metastasis.Supported by grants from the Spanish Ministry of Health and Consumer Affairs FIS/PI041937 and FIS/PI071245, by the European Commission MetaBre contract No. LSHC-CT-2004-506049, and by the Spanish Ministry of Education and Science SAF2004-0188-E. B.O. and R.A. acknowledge grants from the Spanish Ministry of Education and Science (MEC BIO2005-00533 and MCyT BIO2002-0369), and P.L.F. from the Marató-TV3, RETICC from Instituto Carlos III, and Xarxa de Bancs de Tumors de Cataluny

    Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients

    Get PDF
    Gene signatures derived from cancer stem cells (CSCs) predict tumor recurrence for many forms of cancer. Here, we derived a gene signature for colorectal CSCs defined by high Wnt signaling activity, which in agreement with previous observations predicts poor prognosis. Surprisingly, however, we found that elevated expression of Wnt targets was actually associated with good prognosis, while patient tumors with low expression of Wnt target genes segregated with immature stem cell signatures. We discovered that several Wnt target genes, including ASCL2 and LGR5, become silenced by CpG island methylation during progression of tumorigenesis, and that their re-expression was associated with reduced tumor growth. Taken together, our data show that promoter methylation of Wnt target genes is a strong predictor for recurrence of colorectal cancer, and suggest that CSC gene signatures, rather than reflecting CSC numbers, may reflect differentiation status of the malignant tissu

    Genes that mediate breast cancer metastasis to the brain

    No full text
    The molecular basis for breast cancer metastasis to the brain is largely unknown(1,2). Brain relapse typically occurs years after the removal of a breast tumour(2-4), suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha 2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver(5,6), suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain(7), the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interaction
    corecore