25 research outputs found

    Predictors of trend in CD4-positive T-cell count and mortality among HIV-1-infected individuals with virological failure to all three antiretroviral-drug classes

    No full text

    Azimuthal Correlations within Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions

    No full text
    International audienceThe structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at sNN=5.02  TeV, corresponding to an integrated luminosity of 0.38  nb-1, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet transverse momentum vectors is found to be positive, and rising, as the dijet transverse momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects

    Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceResults are presented from a search for the Higgs boson decay H → Zγ, where Z → ℓ+^{+}^{−} with ℓ = e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb1^{−1}. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength μ, defined as the product of the cross section and the branching fraction \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] relative to the standard model prediction, is extracted from a simultaneous fit to the ℓ+^{+}^{−}γ invariant mass distributions in all categories and is measured to be μ = 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 pb. The observed (expected) upper limit at 95% confidence level on μ is 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) is measured to be 1.50.6+0.7 {1.5}_{-0.6}^{+0.7} , which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level.[graphic not available: see fulltext

    Search for heavy resonances and quantum black holes in eμ\mu, eτ\tau, and μτ\mu\tau final states in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A search is reported for heavy resonances and quantum black holes decaying into eμ\mu, eτ\tau, and μτ\mu\tau final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at s=\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The eμ\mu, eτ\tau, and μτ\mu\tau invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ\tau sneutrino production in RR parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ\tau sneutrinos are excluded for masses up to 4.2 TeV in the eμ\mu channel, 3.7 TeV in the eτ\tau channel, and 3.6 TeV in the μτ\mu\tau channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the eμ\mu channel, up to 4.3 TeV in the eτ\tau channel, and up to 4.1 TeV in the μτ\mu\tau channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the eμ\mu channel, 5.2 TeV in the eτ\tau channel, and 5.0 TeV in the μτ\mu\tau channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.A search is reported for heavy resonances and quantum black holes decaying into eμ, eτ, and μτ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016–2018 at s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. The eμ, eτ, and μτ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ sneutrino production in R parity violating supersymmetric models, heavy Z′ gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ sneutrinos are excluded for masses up to 4.2TeV in the eμ channel, 3.7TeV in the eτ channel, and 3.6TeV in the μτ channel. A Z′ boson with lepton flavor violating couplings is excluded up to a mass of 5.0TeV in the eμ channel, up to 4.3Te V in the eτ channel, and up to 4.1TeV in the μτ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6TeV in the eμ channel, 5.2TeV in the eτ channel, and 5.0TeV in the μτ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.[graphic not available: see fulltext]A search is reported for heavy resonances and quantum black holes decaying into eμ\mu, eτ\tau, and μτ\mu\tau final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at s\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The eμ\mu, eτ\tau, and μτ\mu\tau invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ\tau sneutrino production in RR parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ\tau sneutrinos are excluded for masses up to 4.2 TeV in the eμ\mu channel, 3.7 TeV in the eτ\tau channel, and 3.6 TeV in the μτ\mu\tau channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the eμ\mu channel, up to 4.3 TeV in the eτ\tau channel, and up to 4.1 TeV in the μτ\mu\tau channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the eμ\mu channel, 5.2 TeV in the eτ\tau channel, and 5.0 TeV in the μτ\mu\tau channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays

    Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    International audienceA search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016-2018 and corresponding to an integrated luminosity of 138 fb1^{-1}. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W' bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W' boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak WW parameter, are presented using LHC data for the first time. These results together with those from the direct W' resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements

    Strange hadron collectivity in pPb and PbPb collisions

    No full text
    International audienceThe collective behavior of KS0 {\textrm{K}}_{\textrm{S}}^0 and Λ/Λ \Lambda /\overline{\Lambda} strange hadrons is studied by measuring the elliptic azimuthal anisotropy (v2_{2}) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy sNN \sqrt{s_{\textrm{NN}}} = 8.16 TeV and lead-lead (PbPb) collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20 GeV is present. The strange hadron v2_{2} values extracted in pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.[graphic not available: see fulltext

    Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell-Yan production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe double differential cross sections of the Drell–Yan lepton pair (+\ell ^+\ell ^-, dielectron or dimuon) production are measured as functions of the invariant mass mm_{\ell \ell }, transverse momentum pT()p_{\textrm{T}} (\ell \ell ), and φη\varphi ^{*}_{\eta }. The φη\varphi ^{*}_{\eta } observable, derived from angular measurements of the leptons and highly correlated with pT()p_{\textrm{T}} (\ell \ell ), is used to probe the low-pT()p_{\textrm{T}} (\ell \ell ) region in a complementary way. Dilepton masses up to 1TeV\,\text {Te\hspace{-.08em}V} are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mm_{\ell \ell } ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb1\,\text {fb}^{-1} of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV\,\text {Te\hspace{-.08em}V}. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation

    Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceA search for pairs of dijet resonances with the same mass is conducted in final states with at least four jets. Results are presented separately for the case where the four jet production proceeds via an intermediate resonant state and for nonresonant production. The search uses a data sample corresponding to an integrated luminosity of 138 fb1^{−1} collected by the CMS detector in proton-proton collisions at s \sqrt{s} = 13 TeV. Model-independent limits, at 95% confidence level, are reported on the production cross section of four-jet and dijet resonances. These first LHC limits on resonant pair production of dijet resonances via high mass intermediate states are applied to a signal model of diquarks that decay into pairs of vector-like quarks, excluding diquark masses below 7.6 TeV for a particular model scenario. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. The nonresonant search excludes pair production of top squarks with masses between 0.50 TeV to 0.77 TeV, with the exception of a small interval between 0.52 and 0.58 TeV, for supersymmetric R-parity-violating decays to quark pairs, significantly extending previous limits. Here, the most significant excess above the predicted background occurs at an average dijet mass of 0.95 TeV, for which the local and global significances are 3.6 and 2.5 standard deviations, respectively.[graphic not available: see fulltext

    Search for narrow resonances in the <math display="inline"><mi>b</mi></math>-tagged dijet mass spectrum in proton-proton collisions at <math display="inline"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math>

    No full text
    International audienceA search is performed for narrow resonances decaying to final states of two jets, with at least one jet originating from a b quark, in proton-proton collisions at s=13  TeV. The data set corresponds to an integrated luminosity of 138  fb-1 collected with the CMS detector at the LHC. Jets originating from energetic b hadrons are identified through a b-tagging algorithm that utilizes a deep neural network or the presence of a muon inside a jet. The invariant mass spectrum of jet pairs is well described by a smooth parametrization and no evidence for the production of new particles is observed. Upper limits on the production cross section are set for excited b quarks and other resonances decaying to dijet final states containing b quarks. These limits exclude at 95% confidence level models of Z′ bosons with masses from 1.8 TeV to 2.4 TeV and of excited b quarks with masses from 1.8 TeV to 4.0 TeV. This is the most stringent exclusion of excited b quarks to date
    corecore