2,356 research outputs found

    Ground-Based Coronagraphy with High Order Adaptive Optics

    Get PDF
    We summarize the theory of coronagraphic optics, and identify a dimensionless fine-tuning parameter, F, which we use to describe the Lyot stop size in the natural units of the coronagraphic optical train and the observing wavelength. We then present simulations of coronagraphs matched to adaptive optics (AO) systems on the Calypso 1.2m, Palomar Hale 5m and Gemini 8m telescopes under various atmospheric conditions, and identify useful parameter ranges for AO coronagraphy on these telescopes. Our simulations employ a tapered, high-pass filter in spatial frequency space to mimic the action of adaptive wavefront correction. We test the validity of this representation of AO correction by comparing our simulations with recent K-band data from the 241-channel Palomar Hale AO system and its dedicated PHARO science camera in coronagraphic mode.Comment: To appear in ApJ, May 2001 (28 pages, 10 figs

    Climate Change and Vector Borne Diseases on NASA Langley Research Center

    Get PDF
    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies

    Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems

    Get PDF
    Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe^(2+)-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1:1 Fe(II):Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of E_h, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions

    Ground-based coronagraphy with high-order adaptive optics

    Get PDF
    We simulate the actions of a coronagraph matched to diffraction-limited adaptive optics (AO) systems on the Calypso 1.2 m, Palomar Hale 5 m and Gemini 8.1 m telescopes, and identify useful parameter ranges for AO coronagraphy on these systems. We model the action of adaptive wavefront correction with a tapered, high-pass filter in spatial frequency rather than a hard low frequency cutoff, and estimate the minimum number of AO channels required to produce sufficient image quality for coronagraphic suppression within a few diffraction widths of a central bright object (as is relevant to e.g., brown dwarf searches near late-type dwarf stars). We explore the effect of varying the occulting image- plane stop size and shape, and examine the trade-off between throughput and suppression of the image halo and Airy rings. We discuss our simulations in the context of results from the 241-channel Palomar Hale AO coronagraph system, and suggest approaches for future AO coronagraphic instruments on large telescopes

    Assessment of energy intake and energy expenditure of male adolescent academy-level soccer players during a competitive week

    Get PDF
    This study investigated the energy intake and expenditure of professional adolescent academy-level soccer players during a competitive week. Over a seven day period that included four training days, two rest days and a match day, energy intake (self-reported weighed food diary and 24-h recall) and expenditure (tri-axial accelerometry) were recorded in 10 male players from a professional English Premier League club. The mean macronutrient composition of the dietary intake was 318 ± 24 g·day−1 (5.6 ± 0.4 g·kg−1 BM) carbohydrate, 86 ± 10 g·day−1 (1.5 ± 0.2 g·kg−1 BM) protein and 70 ± 7 g·day−1 (1.2 ± 0.1 g·kg−1 BM) fats, representing 55% ± 3%, 16% ± 1%, and 29% ± 2% of mean daily energy intake respectively. A mean daily energy deficit of −1302 ± 1662 kJ (p = 0.035) was observed between energy intake (9395 ± 1344 kJ) and energy expenditure (10679 ± 1026 kJ). Match days (−2278 ± 2307 kJ, p = 0.012) and heavy training days (−2114 ± 2257 kJ, p = 0.016) elicited the greatest deficits between intake and expenditure. In conclusion, the mean daily energy intake of professional adolescent academy-level soccer players was lower than the energy expended during a competitive week. The magnitudes of these deficits were greatest on match and heavy training days. These findings may have both short and long term implications on the performance and physical development of adolescent soccer players

    Viral factors in influenza pandemic risk assessment

    Get PDF
    The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk

    Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play

    Get PDF
    Objectives: The physiological and performance effects of carbohydrate-electrolyte gels consumed before the 30 min extra-time period of prolonged soccer-specific exercise were investigated. Design: Randomised, double-blind, crossover. Methods: Eight English Premier League academy soccer players performed 120 min of soccer-specific exercise on two occasions while consuming fluid-electrolyte beverages before exercise, at half-time and 90 min. Carbohydrate-electrolyte (0.7 ± 0.1 g·kg-1 BM) or energy-free placebo gels were consumed ~5 min before extra-time. Blood samples were taken before exercise, at half-time and every 15 min during exercise. Physical (15-m and 30-m sprint speed, 30-m sprint maintenance and countermovement jump height) and technical (soccer dribbling) performance was assessed throughout each trial. Results: Carbohydrate-electrolyte gels improved dribbling precision (+29 ± 20%) and raised blood glucose concentrations by 0.7 ± 0.8 mmol·l-1 during extra-time (both p 3% during half-time (all p < 0.05). Conclusions: Carbohydrate-electrolyte gel ingestion raised blood glucose concentrations and improved dribbling performance during the extra-time period of simulated soccer match-play. Supplementation did not attenuate reductions in physical performance and hydration status that occurred during extra-time
    • …
    corecore