67 research outputs found

    Multi-product inventory managmement model with a multiple periodicity

    Get PDF
    Inventory management is of great interest to various spheres of activity. This theory is a new industry that arose in connection with the need of optimal regulation of reserves. Over the past decades, significant progress has been made in the development of various mathematical models for managing commodity and noncommodity inventories. Despite the fact that this topic is quite popular in the literature, the question of purchasing resources in conditions of their deficit remains topical. The study is devoted to the development of a multi-product inventory management model with a multiple periodicity

    RTS,S/AS01 Malaria Vaccine Efficacy is Not Modified by Seasonal Precipitation: Results from a Phase 3 Randomized Controlled Trial in Malawi

    Get PDF
    The World Health Organization has selected Malawi as one of three sites to pilot the roll-out of RTS,S/AS01 in phase 4 trials. As policy discussions for the expanded use of RTS,S/AS01 continue, it will be critical to determine the performance of the vaccine according to seasonal patterns of malaria transmission in regions of Africa. Given waning vaccine efficacy over time, this secondary analysis demonstrates that administering the vaccine to children in the months prior to malaria season could maximize impact of the vaccine. We followed children (5-17 months) and infants (6-12 weeks) assigned to one of three groups: (1) vaccine with four doses; (2) vaccine with three doses; (3) control. The primary endpoint was defined as episodes of clinical malaria. During the 4-years of follow-up, 658 of 1544 (42.6%) children and infants had at least one episode of clinical malaria. With each 1-inch increase in rainfall per month there was an associated increase in the rate of malaria by 12.6% (95% CI 9.6%, 15.6%,

    Circumsporozoite-specific T cell responses in children vaccinated with RTS,S/AS01 E and protection against P falciparum clinical malaria

    Get PDF
    Background:RTS,S/AS01E is the lead candidate pre-erythrocytic malaria vaccine. In Phase IIb field trials the safety profile was acceptable and the efficacy was 53% (95%CI 31%–72%) for protecting children against clinical malaria caused by P. falciparum. We studied CS-specific T cell responses in order to identify correlates of protection.Methods and Findings:We used intracellular cytokine staining (for IL2, IFNγ, and TNFα), ex-vivo ELISPOTs (IFNγ and IL2) and IFNγ cultured ELISPOT assays to characterize the CS-specific cellular responses in 407 children (5–17 months of age) in a phase IIb randomized controlled trial of RTS,S/AS01E (NCT00380393). RTS,S/ AS01E vaccinees had higher frequencies of CS-specific CD4+ T cells producing IFNγ, TNFα or IL2 compared to control vaccinees. In a multivariable analysis TNFα+ CD4+ T cells were independently associated with a reduced risk for clinical malaria among RTS,S/AS01E vaccinees (HR = 0.64, 95%CI 0.49–0.86, p = 0.002). There was a non-significant tendency towards reduced risk among control vaccinees (HR = 0.80, 95%CI 0.62–1.03, p = 0.084), albeit with lower CS-specific T cell frequencies and higher rates of clinical malaria. When data from both RTS,S/AS01E vaccinees and control vaccinees were combined (with adjusting for vaccination group), the HR was 0.74 (95%CI 0.62–0.89, p = 0.001). After a Bonferroni correction for multiple comparisons (n-18), the finding was still significant at p = 0.018. There was no significant correlation between cultured or ex vivo ELISPOT data and protection from clinical malaria. The combination of TNFα+ CD4+ T cells and anti-CS antibody statistically accounted for the protective effect of vaccination in a Cox regression model.Conclusions:RTS,S/AS01E induces CS-specific Th1 T cell responses in young children living in a malaria endemic area. The combination of anti-CS antibody concentrations titers and CS-specific TNFα+ CD4+ T cells could account for the level of protection conferred by RTS,S/AS01E. The correlation between CS-specific TNFα+ CD4+ T cells and protection needs confirmation in other datasets

    Randomized, Controlled Trial of the Long Term Safety, Immunogenicity and Efficacy of RTS,S/AS02(D) Malaria Vaccine in Infants Living in a Malaria-Endemic Region.

    Get PDF
    The RTS,S/AS malaria candidate vaccine is being developed with the intent to be delivered, if approved, through the Expanded Programme on Immunization (EPI) of the World Health Organization. Safety, immunogenicity and efficacy of the RTS,S/AS02(D) vaccine candidate when integrated into a standard EPI schedule for infants have been reported over a nine-month surveillance period. This paper describes results following 20 months of follow up. This Phase IIb, single-centre, randomized controlled trial enrolled 340 infants in Tanzania to receive three doses of RTS,S/AS02(D) or hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received DTPw/Hib (diphtheria and tetanus toxoids, whole-cell pertussis vaccine, conjugated Haemophilus influenzae type b vaccine) at the same timepoints. The study was double-blinded to month 9 and single-blinded from months 9 to 20. From month 0 to 20, at least one SAE was reported in 57/170 infants who received RTS,S/AS02(D) (33.5%; 95% confidence interval [CI]: 26.5, 41.2) and 62/170 infants who received hepatitis B vaccine (36.5%; 95% CI: 29.2, 44.2). The SAE profile was similar in both vaccine groups; none were considered to be related to vaccination. At month 20, 18 months after completion of vaccination, 71.8% of recipients of RTS,S/AS02(D) and 3.8% of recipients of hepatitis B vaccine had seropositive titres for anti-CS antibodies; seroprotective levels of anti-HBs antibodies remained in 100% of recipients of RTS,S/AS02(D) and 97.7% recipients of hepatitis B vaccine. Anti-HBs antibody GMTs were higher in the RTS,S/AS02(D) group at all post-vaccination time points compared to control. According to protocol population, vaccine efficacy against multiple episodes of malaria disease was 50.7% (95% CI: -6.5 to 77.1, p = 0.072) and 26.7% (95% CI: -33.1 to 59.6, p = 0.307) over 12 and 18 months post vaccination, respectively. In the Intention to Treat population, over the 20-month follow up, vaccine efficacy against multiple episodes of malaria disease was 14.4% (95% CI: -41.9 to 48.4, p = 0.545). The acceptable safety profile and good tolerability of RTS,S/AS02(D) in combination with EPI vaccines previously reported from month 0 to 9 was confirmed over a 20 month surveillance period in this infant population. Antibodies against both CS and HBsAg in the RTS,S/AS02(D) group remained significantly higher compared to control for the study duration. Over 18 months follow up, RTS,S/AS02(D) prevented approximately a quarter of malaria cases in the study population. CLINICAL TRIALS: Gov identifier: NCT00289185

    Safety, Immunogenicity and Duration of Protection of the RTS,S/AS02D Malaria Vaccine: One Year Follow-Up of a Randomized Controlled Phase I/IIb Trial

    Get PDF
    The RTS,S/AS02(D) vaccine has been shown to have a promising safety profile, to be immunogenic and to confer protection against malaria in children and infants.We did a randomized, controlled, phase I/IIb trial of RTS,S/AS02(D) given at 10, 14 and 18 weeks of age staggered with routine immunization vaccines in 214 Mozambican infants. The study was double-blind until the young child completed 6 months of follow-up over which period vaccine efficacy against new Plasmodium falciparum infections was estimated at 65.9% (95% CI 42.6-79.8, p<0.0001). We now report safety, immunogenicity and estimated efficacy against clinical malaria up to 14 months after study start. Vaccine efficacy was assessed using Cox regression models. The frequency of serious adverse events was 32.7% in the RTS,S/AS02(D) and 31.8% in the control group. The geometric mean titers of anti-circumsporozoite antibodies declined from 199.9 to 7.3 EU/mL from one to 12 months post dose three of RTS,S/AS02(D), remaining 15-fold higher than in the control group. Vaccine efficacy against clinical malaria was 33% (95% CI: -4.3-56.9, p = 0.076) over 14 months of follow-up. The hazard rate of disease per 2-fold increase in anti-CS titters was reduced by 84% (95% CI 35.1-88.2, p = 0.003).The RTS,S/AS02(D) malaria vaccine administered to young infants has a good safety profile and remains efficacious over 14 months. A strong association between anti-CS antibodies and risk of clinical malaria has been described for the first time. The results also suggest a decrease of both anti-CS antibodies and vaccine efficacy over time.ClinicalTrials.gov NCT00197028

    Statistical methodology for the evaluation of vaccine efficacy in a phase III multi-centre trial of the RTS,S/AS01 malaria vaccine in African children

    Get PDF
    BACKGROUND\ud \ud There has been much debate about the appropriate statistical methodology for the evaluation of malaria field studies and the challenges in interpreting data arising from these trials.\ud \ud METHODS\ud \ud The present paper describes, for a pivotal phase III efficacy of the RTS, S/AS01 malaria vaccine, the methods of the statistical analysis and the rationale for their selection. The methods used to estimate efficacy of the primary course of vaccination, and of a booster dose, in preventing clinical episodes of uncomplicated and severe malaria, and to determine the duration of protection, are described. The interpretation of various measures of efficacy in terms of the potential public health impact of the vaccine is discussed.\ud \ud CONCLUSIONS\ud \ud The methodology selected to analyse the clinical trial must be scientifically sound, acceptable to regulatory authorities and meaningful to those responsible for malaria control and public health policy

    Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age.

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria is a pressing global health problem. A previous study of the malaria vaccine RTS,S (which targets the circumsporozoite protein), given with an adjuvant system (AS02A), showed a 30% rate of protection against clinical malaria in children 1 to 4 years of age. We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. METHODS: We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi, Kenya, and Korogwe, Tanzania. The primary end point was fever with a falciparum parasitemia density of more than 2500 parasites per microliter, and the mean duration of follow-up was 7.9 months (range, 4.5 to 10.5). RESULTS: A total of 894 children were randomly assigned to receive the RTS,S/AS01E vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; P<0.001) on the basis of Cox regression. Overall, there were 38 episodes of clinical malaria among recipients of RTS,S/AS01E, as compared with 86 episodes among recipients of the rabies vaccine, with an adjusted rate of efficacy against all malarial episodes of 56% (95% CI, 31 to 72; P<0.001). All 894 children were included in the intention-to-treat analysis, which showed an unadjusted efficacy rate of 49% (95% CI, 26 to 65; P<0.001). There were fewer serious adverse events among recipients of RTS,S/AS01E, and this reduction was not only due to a difference in the number of admissions directly attributable to malaria. CONCLUSIONS: RTS,S/AS01E shows promise as a candidate malaria vaccine. (ClinicalTrials.gov number, NCT00380393.
    corecore